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Single cell gene regulation in the epidermis

Abstract

Mammalian epidermis comprises multiple cell subpopulations including cells

residing in the interfollicular epidermis (IFE), hair follicles and sebaceous glands.

Recent advances have led to gene expression profiling of single cells at lower cost,

enabling unbiased identification of distinct subpopulations and cell states within

these compartments.

To investigate the range of possible epidermal cell states, I studied the effect of a

specific signalling perturbation, Wnt/beta-catenin signalling, on epidermal subpop-

ulations. Although the bulk transcriptomic effect of Wnt signalling is well-studied,

little is known about the effect of non-cell autonomous Wnt signalling at the single

cell level. In particular, I wanted to address the mechanism by which keratinocytes

in proximity to a Wnt-receiving cell are co-opted to undergo a change in cell fate.

To address this question, I performed single-cell RNA-sequencing on mouse ker-

atinocytes co-cultured with and without beta-catenin-activated neighbouring cells.

I identified five distinct cell states in cultures that had not been exposed to the beta-

catenin stimulus and showed that the stimulus redistributes wild-type subpopu-

lation proportions. Using temporal single-cell analysis, I reconstruct the cell fate
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change induced by Wnt activation from neighbouring cells and identify transcrip-

tion factors responsible for these changes.

As more single-cell data is produced there is an increasing need to integrate di-

verse datasets and better analyse underutilised data to gain biological insights. Anal-

ysis of single cell RNA-seq data is challenging due to biological and technical noise

which not only varies between laboratories but also between batches.

To address these challenges, I applied a new generative deep learning approach

called Generative Adversarial Networks (GAN) to biological data. I show that it is

possible to integrate diverse skin (epidermal) datasets and in doing so, our genera-

tive model is able to simulate realistic scRNA-seq data that covers the full diversity

of cell types. Using this generative model I am able to obtain a universal representa-

tion of epidermal differentiation and use this to predict the effect of cell state pertur-

bations on gene expression at high time-resolution. This method is broadly applica-

ble and can be used to analyse other single cell data types.

By integrating genomic, imaging and functional data I have uncovered new regu-

lators of epidermal cell state and added to our understanding of non-cell autonomous

Wnt signalling.
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Chapter 1

Introduction

1.1 Mammalian epidermis

The skin is the interface between the body and the external environment. Among its

many functions is to act as an impermeable barrier throughout embryonic develop-

ment and adult life. The outermost part of the skin is the interfollicular epidermis

(IFE), a stratified multilayer epithelium with associated adnexal structures including

hair follicles (HF) and sebaceous glands (SG). Keratinocytes in the IFE and HF are the

most abundant cell type within the epidermis followed by less abundant cell types

such as secretory sebocytes, melanocytes responsible for pigmentation, immune cells

such as Langerhans cells andMerkel cells which facilitate transduction of mechanical

force for sensation of light forces.
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Figure 1.1: Comparative histology ofmouse and human skin.
Histology of adult mouse (left) and human (right) skin stained with hematoxylin. Dashed line indicates the base-
ment membrane boundary between dermis and epidermis. Note that rete (dermal) ridges and sweat glands are
only present in the human skin. Scale bars, 100μm (mouse), 500μm (human). Figure adapted from Kretzschmar
and Watt (2014).

1.1.1 Interfollicular epidermis

In humans the interfollicular epidermis is often characterised as comprising four his-

tologically distinct layers of keratinocytes termed the basal layer, spinous layer, gran-

ular layer, and the cornified layer (McGrath and Uitto, 2010). The basal layer of the

epidermis is composed of keratinocytes anchored to the basement membrane, a spe-

cialised layer of extracellular matrix (ECM) rich in collagens, laminins and proteogly-

cans. These layers are labelled on Figure 1.2 (right). Most IFE proliferation occurs in

the basal layer and progeny of basal cellsmigrate upwards towards the surface as they

differentiate. Cells in the intermediate spinous and granular layers are preparing for

terminal differentiation and contain precursor proteins necessary for formation of the

cornified envelope. The outermost layer of cells is a cornified layer of anuclear ker-
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atinocytes. These terminally differentiated keratinocytes are filled with aggregrated

keratin filaments, cross-linked proteins and lipids to aid the barrier function of the epi-

dermis. As cells in the outermost layer become progressively more keratinised they

are sloughed off and lost from the skin. Cells are continuously lost from the epidermis

in this way, requiring that the epidermis possess a robust programme of homeostasis,

balancing cell proliferation and differentiation to maintain the epidermis in a steady

state.

Accompanying histological differences between IFE layers there are important

molecular differences which distinguish these strata. Cells in the basal layer express

high levels of integrins, primarily beta-1 (Itgb1) (Jones and Watt, 1993) and two ker-

atins, keratin 5 and keratin 14 (Fuchs and Green, 1980). As keratinocytes commit to

differentiation, expression of these basal marker genes is downregulated andmarkers

of commitment to differentiation are upregulated. Two such genes are keratin 1 and

keratin 10 which are exclusively expressed suprabasally (Schweizer et al., 1984; Joost

et al., 2016). Furthermore, cells undergoing terminal differentiation express a distinct

set of genes to enact the structural changes required for cornified envelope barrier

function. Three molecules characteristic of terminally differentiating cells are envo-

plakin (Evl), periplakin (Ppl) and involucrin (Ivl) (Rice and Green, 1979; Ruhrberg

et al., 1997). Cross-linking of these proteins with attached lipids to assemble the corni-

fied envelope is triggered by a rise in intracellular Ca2+, which activates the transglu-

taminase 1 (Tgm1) enzyme. In turn, transglutaminase catalyses formation of N�-(γ-

glutamyl)lysine cross-links and the attachment of long chain ω-hydroxyceramides, a
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Figure 1.2: Schematic of a hair follicle and layers of the interfollicular epidermis.
Hair follicles (left) can be divided into three sections, the infundibulum, isthmus and bulb. Histologically, the
interfollicular epidermis (right) is composed of four distinct layers, the basal, spinous, granular and cornified
layers.

subset of lipids (Marekov and Steinert, 1998).

Mouse IFE is organised in a similar structure to human IFE, however, it is typi-

cally thinner and consists of 2-4 layers of supbrasal keratinocytes in contrast to 6-10

cell layers in humans. Another important difference is the topology of the basement

membrane. In humans the dermal-epidermal junction undulates, termed rete ridges,

whereas in mice this junction is flat.

1.1.2 Hair follicle

Hair follicles are the primary appendage connected to the interfollicular epidermis.

They are multilayered cylindrical structures which extend into the dermis (see Figure

1.1). Hair follicles can be subdivided into three sections, labelled on Figure 1.2: (1)

infundibulum, the upper portion of the hair follicle connecting the sebaceous gland
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and interfollicular epidermis, (2) the isthmus is the middlle portion of the hair follicle,

extending between the attachment of the arrector pilli muscle to the sebaceous gland

duct. (3) The lowest portion of the hair follicle includes the hair bulb, hair matrix and

dermal papilla.

Unlike the interfollicular epidermis, hair follicles have continuous cycles of growth

(anagen), regression (catagen) and rest (telogen). In anagen, slow-cycling cells resid-

ing in the bulge (label retaining cells) produce rapidly proliferating matrix cells (Cot-

sarelis et al., 1990). The progeny of these cells differentiate into seven different lin-

eages comprising the hair shaft and inner root sheath. On the start of catagen, the der-

mal papillae regresses through apoptosis and the hair follicle moves upwards. This

phase is followed by hair follicle dormancy (telogen) where matrix cells cease to pro-

liferate.

Hair follicles are a complex mini-organ and contain at least 11 different subpop-

ulations (Yang et al., 2017). In mice, CD34+, Keratin 15+, label retaining cells resid-

ing in the bulge are considered as one of the main HF stem cell subpopulations. In

vitro these cells are highly proliferative and are able to reconstitute both the interfol-

licular epidermis and hair follicle in vivo (Tumbar et al., 2004). Similarly, long term

lineage tracing studies have shown that cells expressing Leu-rich repeat-containing

G-protein-coupled receptor 5 (Lgr5) are able to differentiate into all lineages of the

psilosebaceous unit (Jaks et al., 2008). Importantly, these cells have the capability to

contribute to IFE maintenance, e.g. during wound injury response, however, they

appear not to contribute to the IFE under homeostatic conditions (Ito et al., 2005).
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1.1.3 Sebaceous gland

Sebaceous glands (SG) are exocrine glands usually attached to hair follicles. One of

their primary roles is to secrete sebum, an oily substance, into hair follicles in order

to lubricate hair and skin. SG have an acinar (multi-lobed) structure connected to the

hair follicle via a secretory duct comprising stratified epithelial cells (Knutson, 1974).

Cells on the outer periphery are undifferentiated whereas cells located towards the

center contain large numbers of lipid droplets. Differentiated cells proximal to the

duct break apart and release lipid-rich sebum with the help of lysosomal enzymes

(Niemann, 2009).

The number of sebaceous glands remains approximately constant throughout life,

however, their size and activity varieswith age (Zouboulis, 2004). In humans, a strong

increase in sebumproduction occurs immediately after birth and continues to increase

for the first week before reducing thereafter. During this time sebaceous glands are

enlarged; their size regresses after birth until adolescence when there is again an in-

crease in gland size and activity.

1.1.4 Epidermal cell state and heterogeneity

Heterogeneity in keratinocytes has been studied for over thirty years; earlier studies

focused on categorising differences in morphology and structural features (Lavker

and Sun, 1982). Barandon and Green pushed forward understanding of keratinocyte
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Figure 1.3: Epidermal cell heterogeneity.
Left: experiments by Barandon and Green demonstrated functional heterogeneity in cultured epidermal cells.
Their pioneering experiments demonstrated that subclones from single cell colonies varied in their subsequent
proliferative potential. They termed these cell subpopulations holoclones, meroclones and paraclones. Right:
Jones and Watt built on this work and demonstrated a link between molecular heterogeneity, in this case het-
erogeneity in integrin beta-1 (Itgb1) cell surface abundance and proliferative potential. The Itgb1 FACS his-
togram was provided by Dr Christina Philippeos.

heterogeneity by demonstrating that not all keratinocyteswere equal in their ability to

proliferate in vitro (Barrandon and Green, 1987). Their study, depicted on the left side

of Figure 1.3, interrogated the colony-forming ability of single human keratinocytes

when cultured on a mouse fibroblast 3T3 feeder layer. Keratinocytes were cultured

for seven days followed by a further subculture of 12 days. At the conclusion of the

experiment they noted three categories of colonies termedholoclones, meroclones and

paraclones with decreasing proliferative ability. Hence, their experiments established

that keratinocytes are heterogeneous not only in appearance but also function.

One of the earliest studies to establish a link between molecular and functional

heterogeneity examined integrin beta-1 (Jones andWatt, 1993; Jones et al., 1995). Cells
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with higher levels of integrin beta-1 exhibit higher colony forming efficiency in vitro in

comparison to cells with low expression of integrin beta-1. Furthermore, it was shown

that integrin beta-1 expression is not uniformly distributed across the epidermis. The

discovery of integrin beta-1 as a stem cell marker led to a search for further markers

of epidermal subpopulations and lineages. Underlying this search is the hypothesis

that the observed molecular heterogeneity corresponds to distinct cellular states of

gene regulation. Hence, understanding the extent of keratinocyte heterogeneity will

in turn lead to understanding the extent of gene regulatory states.

Technologies such as cell sorting, mass cytometry, mass spectrometry and single

cell RNA-sequencing have allowed investigation of molecular heterogeneity in an un-

biased manner. In particular, Joost and colleagues have performed a survey of mes-

senger RNA expression in all murine epidermal cell types (Joost et al., 2016). This

form of a priori investigation revealed a common differentiation and spatial gene ex-

pression signature for hair follicle and interfollicular epidermis cells.

1.2 Wnt/β-catenin signalling in the epidermis

Throughout the history of skin investigation a handful of signalling pathways have

been recurrently identified asmaster regulators ofmultiple (often opposing) processes.

Notch, Hippo, TGF-β/BMP, and Wnt/β-catenin signalling have all been implicated

in regulation of self-renewal, lineage selection, differentiation and development of the

epidermis (Watt and Jensen, 2009). Wnt signalling is particularly compelling to study
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Figure 1.4: Wnt/β-catenin signalling pathway.
In the ”off” state and in the absence of Wnt ligands β-catenin is bound by the destruction complex comprised
of Axin, GSK3-β and CK1α. This leads to phosphorylation of β-catenin, ubiquitination by β-TrCP and proteaso-
mal degradation of β-catenin. Hence, Wnt response DNA elements remain repressed by transcriptional core-
pressors such as Groucho. Wnt signalling is activated by the binding of Wnt ligands to the Frizzled receptor,
causing recruitment of the destruction complex to LRP5/6. This inhibits the ubiquitination and degradation of
β-catenin resulting in an accumulation in the cytoplasm and eventually increased β-catenin abundance in the
nucleus. In the nucleus β-catenin acts as a transcriptional coactivator alongside TCF/LEF transcription factors,
leading to the transcription of downstream Wnt target genes.

asmany components of theWnt signalling cascade are also present in other signalling

pathways. Hence, observations and perturbations to Wnt signalling aids our under-

standing of how molecules in these interrelated signalling cascades coordinate cell

and tissue state.
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Figure 1.5: Wnt responsive elements activated byWnt signalling.
Wnt responsive elements (WRE) with the motif CCTTTGNN are bound by TCF/LEF transcription factors. When
Wnt signalling is off, these transcription factors are bound by Groucho and additional co-factors leading to
transcriptional silencing. When Wnt signalling is on, there is an increase in nuclear beta-catenin which binds
the WRE as a co-factor with TCF/LEF. Together this complex recruits other co-factors to activate transcription
of Wnt target genes.

1.2.1 Wnt pathway

Wnt proteins are conserved in diverse organisms throughout the animal kingdom.

There are 12 families of conservedWnt proteins and themajority ofmammalian genomes

encode 19Wnt genes. Few single cell organisms harbourWnt proteins, however, Wnt

homologs have been identified in sea sponges and sea anemones indicating that Wnt

signallingmay play a role in the evolution of multicellular gene regulation (Kusserow

et al., 2005; Petersen and Reddien, 2009).

A key feature of these conserved signalling cascades is the Wnt effector protein

β-catenin. In an unactivated state, β-catenin is predominantly cytoplasmic and con-

tinually degraded by the Axin complex consisting of adenomatous polyposis coli (APC),

casein kinase 1 (CK1), and glycogen synthase kinase 3 (GSK3) (see Figure 1.4 for an

overview of the Wnt pathway cascade). CK1 and GSK3 phosphorylation of β-catenin

triggers β-catenin destabilisation (Peifer et al., 1994) by enabling recognition by βTrCP,
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an E3 ubiquitin ligase subunit. Subsequently, β-catenin is ubiquitinated and degraded

by the proteosome, preventing β-catenin export to the nucleus. Wnt/β-catenin sig-

nalling is activated when a Wnt ligand binds to the Frizzled receptor (Frz) leading

to the recruitment of a complex of proteins comprising Dishevelled (Dvl), low den-

sity lipoprotein receptor-related protein 5/6 (LRP5/6). Dvl is next responsible for

phosphorylation of the Wnt-Frx-LRP5/6 complex which triggers recruitment of the

Axin complex. These events lead to inhibition of the β-catenin destruction complex

resulting in elevated levels of nuclear β-catenin and accumulation of β-catenin in the

nucleus (MacDonald et al., 2009). Within the nucleus β-catenin binds with an array

of cofactors and transcription factors, most notably the TCF/LEF family (Arce et al.,

2006), alongside other less well studied cofactors such as nuclear E-cadherin (CDH1)

(Ferber et al., 2008).

1.2.2 β-catenin and TCF/LEF regulation of gene expression

Without β-catenin, TCF acts as a repressor of gene expression by interactingwithGrou-

cho (transducin-like enhancer of split 1, TLE1 in human). This complex binds to Wnt

responsive elements (WRE)with a DNAbinding consensus sequence ofCCTTTGNN

as shown in Figure 1.5. In mammals there are four TCF proteins TCF-1, TCF-3, TCF-

4, and LEF-1 (in humans these genes are named TCF7, TCF7L1, TCF7L2 and LEF1

respectively) (Cadigan and Waterman, 2012). Upon Wnt signalling activation, TCF

proteins complex preferentially with β-catenin, displacing Groucho and recruiting

transcriptional coactivators. There is evidence that less common splice variants of
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TCF-1 and TCF-4 have substantially different DNA binding characteristics to the pre-

dominant isoforms of the TCF family proteins (Atcha et al., 2007). Together, the range

of binding sites and cofactors diversify the modes of gene regulation controlled by

TCF/β-catenin proteins.

1.2.3 Non-canonical Wnt signalling

There are also pathways and downstream effectors of the Wnt pathway independent

of β-catenin. All such pathways are termed the ”non-canonical Wnt pathway” (re-

viewed in (Gó Mez-Orte et al., 2013)). Several non-canonical pathways exist and this

remains an area of active research. The non-canonical pathways can be categorised

into calcium-dependent (Ca2+) and planar cell polarity (PCP) pathways. In Wnt/Ca2+

signalling, binding of the Wnt ligand to its receptor activates a release of intracellu-

lar calciumwhich further activates downstream calcium-dependent kinases. Alterna-

tively, theWnt/PCP pathway involves activation of of the Rho family of GTPases and

downstream c-Jun N-terminal kinases (JNK) which amongst other processes regulate

the arrangement of the cytoskeleton. Investigations in Chapters 2 and 3 of this study

focus on the canonicalWnt pathway dependent on β-catenin, however, it is important

to consider non-canonical pathways when interpreting the effects of Wnt activation

through Wnt ligand rather than directly through β-catenin.
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1.2.4 Role of Wnt/β-catenin signalling in the epidermis

One of the earliest studies to specifically dissect the role of β-catenin signalling in the

epidermis was performed by Birchmeier and colleagues (Huelsken et al., 2001). In a

pioneering study they showed that epidermal specific deletion of β-catenin during em-

bryogenesis prevents the formation of hair follicle placodes. Additionally their study

showed that in the absence of β-catenin, keratinocytes adopted an IFE fate and failed

to differentiate into follicular lineages. Together these data implicated Wnt signalling

in hair follicle placode patterning and epidermal lineage selection. Many later mouse

studies of Wnt signalling would adopt a similar approach of transgenic abrogation or

activation of the Wnt/β-catenin pathway.

To investigate the effect of epidermal Wnt activation, Watt and colleagues devel-

oped and applied a transgenic mouse model allowing transient and constitutive β-

catenin activation targeted to the epidermis (K14ΔNβ-cateninER, see Chapter 2) (Lo

Celso et al., 2004; Silva-Vargas et al., 2005). Constitutive activation was shown to lead

to the formation of follicular tumours when β-catenin was specifically induced in the

IFE. In contrast, short term activation at endogenous levels formed de novo hair folli-

cles, suggesting that IFE lineage cells were redirected towards a hair follicle cell state.

On the basis of these results, later studies addressed the sensitivity of different epi-

dermal compartments to Wnt activation. K15ΔNβ-cateninER and K5ΔNβ-cateninER

transgenic mice were used to selectively activate HF bulge and SG compartments re-

spectively (Baker et al., 2010). Intriguingly, only β-catenin activation of the SG but not

14



the HF bulge lead to ectopic hair follicle formation, however, the hair follicle bulge

showed proliferation and expansion suggesting limited sensitivity to the β-catenin

perturbation.

1.2.5 Wnt/β-catenin in epidermal diseases

Constitutive Wnt activation is a hallmark of a selection of cancers, most notably a

subset of colorectal cancers. Loss of APC in these cancers leads to accumulation of

β-catenin and transcription of downstream target genes (Clements et al., 2003). In a

similar manner, constitutive activation of β-catenin signalling leads to developmental

defects and diseases. Human pilomatricomas, which are benign tumours containing

hair shaft and matrix cells, and trichofolliculomas which contain multilineage cells

have both been shown to be caused by stabilising β-catenin mutations (Chan et al.,

1999).

Perturbation of Wnt signalling resulting in lower β-catenin activity can also re-

sult in adverse effects. An examination of K14ΔNLef1 mice, a model for disruption

of Lef1-β-catenin binding, demonstrated that reduction of Wnt signalling results in

formation of sebaceous gland tumours (Niemann et al., 2002). The relevancy of this

mouse model was later confirmed through sequencing of human sebaceous tumours,

where approximately a third of tumours harbour mutations within the N-terminus of

Lef1, preventing efficient binding with β-catenin (Takeda et al., 2006).

There is also evidence that some squamous cell carcinomas (SCC) are β-catenin
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dependent. Using a mouse model of SCC formation, Huelsken and colleagues have

shown that CD34+ tumour-propagating cells display high levels of nuclear β-catenin

(Malanchi et al., 2008). They further demonstrated functional importance to the β-

catenin+ squamous cell carcinoma cells by showing that loss of β-catenin led to tumour

regression. Similarly, evidence from human basal cell carcinoma samples supports a

role for β-catenin-mediated transformation of cell state (Salto-Tellez et al., 2006).

An extensive review of the role of Wnt signalling in the skin is provided by (Lim

and Nusse, 2013).

1.3 Single cell RNA-sequencing

As discussed in section 1.1.4 epidermal heterogeneity has been a topic of investigation

since the earliest studies which sought to categorise differences in cell morphological

features (Lavker and Sun, 1982). In the wider field, a number of tools have proven

indispensable for assaying single-cell heterogeneity at the RNA and protein level. Flu-

orescence activated cell sorting (FACS) allows the quantification of up to 18 proteins

simultaneously (Chattopadhyay et al., 2006), although most commonly less than five

proteins are quantified. Many FACS protocols have a minimal effect on cell viability

and are therefore compatible with downstream quantification of RNA levels. Mass

cytometry extends this to over 30 simultaneous protein channels (Bendall et al., 2011),

although the process of protein quantification is destructive and therefore does not

allow downstream measurements or experiments.
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Single cell RNA quantificationmethods were first introduced by Coleman and col-

leagues who analysed expression of single live neurons using single cell qPCR (Eber-

wine et al., 1992). This is complemented by single molecule fluorescence in situ hy-

bridisation (smFISH) which allows quantification of gene expression while retaining

spatial information (Femino et al., 1998).

FACS,mass cytometry, single cell qPCR and smFISH all require a prior expectation

of expressed and functionally relevant genes to choose as the subset of genes to assay.

Multiplex methods of these techniques limit the maximum number of assayed genes

to less than 50 genes or proteins whereas there are over 20,000 protein coding genes

in the mouse or human genomes. The advent of RNA-sequencing allowed unbiased

quantification of all expressed transcripts (Mortazavi et al., 2008). Recent develop-

ments in single cell capture methods and RNA-sequencing protocols have enabled

the application of full transcriptome sequencing to single cells.

(Kolodziejczyk et al., 2015a) provides a thorough overview of current single-cell

RNA sequencing technologies.

1.3.1 Single cell gene expression studies of skin

Gene expression studies of skin and specifically the epidermis have long recognised

the need for single cell resolution. One of the earliest studies quantifying single cell

RNA abundance was performed by Jensen and Watt in 2006. At the time, an increas-

ing number of public microarray datasets from FACS-selected populations were avail-
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able. Their study, enabled by advances in cDNA amplification methods, recognised

the need to interrogate these subpopulations further. Subsequently, Tan et al. (2013)

combined further advances in cDNA amplification coupledwith increased sensitivity

of microarrays to interrogate the full human epidermal transcriptome for 62 cells.

More recently, Joost et al. (2016) have taken advantage of advances inmicrofluidics

based single cell methods (discussed later in this chapter) to survey all mouse epider-

mal cell states. Alongside this, the Kasper lab has released an online tool facilitating

the study of cell states and gene expression markers of cell state. There are currently

no publicly available human epidermal scRNA-seq datasets, although dermal data is

available (Philippeos et al., 2018). However, there are plans to produce new epider-

mal scRNA-seq data as part of theHumanCell Atlas, an initiative to produce reference

maps of all human cell types and subpopulations.

1.3.2 Single cell capture methods

The earliest cell capture methods involved manual isolation of single cells using a

glass capillary and processing of the cell as an individual RNA-sequencing library

(Tang et al., 2009). This low-throughput manual method had the advantage of be-

ing able to select cells from precise positions within a tissue and was initially used

to study early embryonic development. In applications where targeted cell isolation

from regions of tissues was desired, laser capture microdissection (LCM) proved to

be a parallel low-throughput method (Keays et al., 2005).
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Figure 1.6: Single cell RNA-sequencing protocol overview.
Single cell capture methods vary in their cell throughput capacity. Methods such as capture by glass capillary
allow control over location but it is difficult to process more than a few dozen cells. Medium throughput meth-
ods such as the Fluidigm C1 microfluidics platform allows capturing and processing of hundreds to a few thou-
sand cells. More recent high-throughput methods such as droplet-based protocols facilitate easy processing of
100,000s of cells. All scRNA-seq protocols comprise five steps, cell lysis to release RNA, reverse transcription
of RNA to cDNA, amplification of cDNA, library preparation and sequencing.

The first high-throughputmethods enabled the capture of hundreds of cells; either

utilising FACS to sort cells into individual wells or microfluidic platforms to capture

cells in chambers (Shalek et al., 2014a). Both of these methods require the dissocia-

tion of cells into a suspension of single cells maintained in a buffer for cell viability,

most commonly enzymatic dissociation through the action of trypsin. The Fluidigm

C1 is the most commonly used microfluidic platform, currently allowing the capture

and mRNA-sequencing of 96 cells per microfluidic integrated fluidic circuit (IFC) or

”chip”. Fluidigm provides three IFCs which differ in cell capture site size (5-10, 10-17

and 17-25μ), requiring a homogenously sized cell population with a known expected

range of sizes.

More recently, droplet based microfluidic approaches have increased cell capture
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throughput by more than an order of magnitude, enabling analysis of thousands to

tens of thousands of cells. Drop-Seq was one of the first protocols to demonstrate the

encapsulation of cellswithin nanoliter-scale aqueous droplets alongside an oligonucleutide-

barcoded bead. Each cell and bead droplet acts as a small PCR chamber and dis-

tinct barcodes for each droplet allow downstreammultiplexing (Macosko et al., 2015).

This technology was later refined and commercialised by 10x Genomics with their

Chromium single cell expression profiling system (Zheng et al., 2016).

1.3.3 Single cell sequencing protocols

Single cell RNA-sequencing is susceptible to noise due to the low starting amounts of

input RNA. Studies have estimated a limit of detection between five and ten mRNA

molecules which corresponds to an approximate capture efficiency of 10% (Ramsköld

et al., 2012; Islam et al., 2011). Typical protocols involve four main steps: (1) cell lysis,

(2) reverse transcription of RNA, (3) cDNA amplification, (4) library preparation for

sequencing.

(1) Cell lysis: Cells are lysed in buffer to disrupt cell membranes and preserve RNA

integrity.

(2) Reverse transcription: Ribosomal RNAs form the majority of cellular RNA and

would therefore dominate if total RNA was sequenced. In order to select for the less

abundant mRNAs the majority of protocols utilise polyT priming of reverse transcrip-

tion. SmartSeq2 and STRT-Seq, the two most commonly utilised protocols achieve
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this through first strand synthesis by a reverse transcriptase using a barcoded polyT

primer followedby template switching of the reverse transcriptase to a template switch-

ing oligonucleotide (TSO) at the 5’ end of the RNA (Islam et al., 2011; Picelli et al., 2014).

This approach allows full-length reverse transcription of theRNA in a sequence-independent

manner. In contrast methods such as the Tang or QuartzSeq protocols result in a

strong 3’ read bias.

(3) cDNA amplification: Most methods amplify the low amount of resultant cDNA

at this point using PCR (SmartSeq2, STRT-seq, Tang). As with many applications of

PCR, exponential amplification of transcripts can introduce artefacts and results must

be interpreted cautiously. Such artefacts can be mitigated by the use of unique molec-

ular identifier (UMI) barcodes allowing downstream computational removal of PCR

duplicates. An alternative method is in vitro transcription (IVT) which results in a

strong 3’ end bias, albeit avoiding biases assoicated with exponential PCR amplifica-

tion.

(4) Library preparation and sequencing: Amplified cDNA libraries can be using ei-

ther single or paired-end conventional manufacturer protocols.

1.3.4 Analysis of single cell RNA-seq

Owing to biological variability, the small amount of starting RNA, and low sensitivity

of single cell protocols, scRNA-seq data is highly challenging to analyse. Analysis

of hundreds to thousands of cells provides new opportunities for the study of cell

and tissue biology. Single cell data is uniquely high-dimensional and sparse when
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compared with most other biological abundance measurements. Whilst some bulk

expression analysis methods equally apply to single cells, in many cases there has

been a need for new algorithms and approaches. This section provides an overview

of the necessary steps to analyse scRNA-seq data as shown in Figure 1.7.

Processing, quality control and normalisation

Initial processing of single cell RNA-sequencing data follows closely to bulk RNA-

seq methods. Read data (typically in FASTQ format) must be demultiplexed, UMIs

must be deduplicated and sequencing adapters trimmed. Some approaches such as

dropEst estimate the probability of UMI barcodes erroneously colliding, particularly

useful for very large numbers of cells (Petukhov et al., 2017). In experiments where

external spike-inRNAshave beenused at a known concentration (e.g. ERCC controls),

these can be used to adjust for differences in cDNA amplification.

It is necessary to remove low quality cells before further downstream analysis to

avoid erroneous cell clustering and pseudotemporal ordering. FASTQC and scPipe

are two useful tools for examining the quality of single cell transcriptomes (Tian et al.,

2018). Using a combination of features such as percentage of reads mapping to mito-

chondrial DNA and total number of reads it is possible to exclude poor quality outlier

cells.

Single cell libraries are next aligned to the genome of choice. STAR and Kallisto

are twomodern alignment tools for full alignment and pseudoalignment respectively
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e.g. FASTQC, scPipe
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e.g. STAR, Kallisto
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(optional) e.g. SCnorm
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Figure 1.7: Analysis workflow for single cell RNA-seq data.
Single cell RNA-sequencing data must be carefully processed to ensure interpretable results. Raw read data is
first processed by trimming adapter sequences and collapsing duplicate cDNA fragments if unique molecular
identifier (UMI) barcodes were used. Next, read data is checked for a variety of quality metrics. Sequenced
libraries which satisfy these metrics are then aligned to the genome of choice. Finally, aligned reads can be
counted against genes or transcripts and optionally normalised to partially remove technical variation between
sequencing libraries.
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(Dobin et al., 2013; Bray et al., 2016). Once aligned, reads are counted against genes

to obtain a raw count matrix consisting of unnormalised counts per gene and cell.

There is no current consensus on a standard normalisationmethod for raw count data.

Typically, cells are normalised for library size (e.g. transcripts per million, TPM).

When analysing data originating from multiple batches or even generated within

different laboratories, it is desirable to remove unwanted batch-effects. Most existing

bulk methods for batch-effect removal are ineffective when applied to single cell data,

hence, development of new single cell specific methods for removal of batch effects

is an active area of research. One example method is SCnorm, which applies regres-

sion to remove differences in sequencing depth, however, there is still debate as to

the amount of biological variability mistakenly removed by these methods (Bacher

et al., 2017; Camara, 2018). More recently, Haghverdi et al. (2018) have applied a mu-

tual nearest neighbors matching approach for batch-effect-correction. This method

requires that a subset of cells is shared between datasets and has the benefit of com-

putation time scaling linearly with number of cells.

Clustering and pseudotemporal ordering

In many applications of scRNA-seq, cells are sampled from a heterogeneous mixture

of subpopulations and it is desirable to cluster cells into distinct cell types or cell states.

Once clustered, these assigned cell identities can be used to perform differential ex-

pression analysis between cell clusters to obtain marker genes and signature gene

24



expression profiles for each cluster.

It is now a de facto standard to apply t-distributed stochastic neighbour embed-

ding (t-SNE) for the visualisation and dimensionality reduction of single cell transcrip-

tomes (van der Maaten and Hinton, 2008a). This supersedes principal component

analysis (PCA) which is more commonly used to visualise bulk gene expression data.

PCA is a statistical method that performs a transformation to convert features (gene

expression values) into a set of linearly uncorrelated principle components. More

specifically, these principle components are obtained by calculating the eigenvectors

of the covariance matrix for the input data. In contrast, t-SNE can only be used for

visualisation and there is no interpretable distance metric or breakdown into mean-

ingful components.

PCA and t-SNE have been widely applied across many fields. More recently, sev-

eral methods have been introduced aimed specifically at single cell gene expression

often combining dimensionality reduction, visualisation and clustering of cells to dif-

fering extents. In many applications of scRNA-seq, it is desirable to infer the number

of distinct cell types and transcriptomic states present in the dataset without prior

knowledge of the subpopulation composition - an unsupervised clustering problem.

The majority of scRNA-seq unsupervised clustering methods are based on either hier-

archical clustering (e.g. pcaReduce (žurauskienė and Yau, 2016) and SINCERA (Guo

et al., 2015)) or k-means (e.g. SC3 (Kiselev et al., 2017) and RaceID (Grün et al., 2015)).

Less commonly, graph based clustering algorithms can be applied; these have the dis-

advantage of requiring cells be mapped to a graph representation in order for graph
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community detection algorithms to be applied (e.g. PhenoGraph (Levine et al., 2015)

and early versions of Seurat (Butler et al., 2018)).

Many biological processes such as development and tissue differentiation exhibit

smooth cell transitions. For these cases, it is useful to computationally reconstruct

the transcriptional path taken by cells through possible cell states. Pseudo-ordering

methods seek to reconstruct cell gene expression trajectories by estimating the tem-

poral (pseudotemporal ordering) or spatial relationships between cells. Previously

mentioned dimensionality reduction approaches or hierarchical clustering methods

can be used to infer these relationships. Alternatively, Monocle2 (Qiu et al., 2017)

utilises reverse graph embedding, i.e. transformation of gene expression vector space

to a graph, followed by calculation of the minimum spanning tree through all cells.

Pseudo-ordering methods have provided insights into the dynamics of single cell

transcription, although they are particularly susceptible to technical noise as many

methods assume that all cell-cell relationships are representative of a valid cell state

transition (Dulken et al., 2017; Raj et al., 2018).

Analysis of cell-to-cell variability

Another area of investigation uniquely opened up by single cell RNA-seq is the char-

acterisation of cell-to-cell transcriptional variability. Bulk differential gene expression

methods often focus on determining whether there is a statistically significant differ-

ence in the mean gene expression between conditions or samples of interest. Single
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cell gene expression information allows us to probe differences in the distribution of

gene expression regardless of differences in mean expression level. SCDE developed

by Kharchenko et al. (2014) and BASiCS developed by Vallejos et al. (2015) are two ex-

amples of a Bayesian approach to single cell differential distribution analysis. SCDE

incorporates evidence provided by dropout events in individual cells with informa-

tion on the average expression level for a genewithin a subpopulation. This is a useful

approach as although a dropout event does not exclude the possibility of expression

for a gene, dropout events constrain the probability of expression at a highmagnitude.

One example of the application of cell-to-cell variability analysis is for the analy-

sis of transcriptional variability over ageing. Martinez-Jimenez et al. (2017) analysed

differences in expression level and expression variability for immune cells in young

and agedmice. Their analysis found that transcriptional variability increaseswith age

and this contributes to a less efficient immune response. Relevant to our investigation,

this study demonstrates that transcriptional variability is an important aspect of cell

state and contributes to the function of tissues and systems.

1.4 Generative deep learning for analysis of genomic data

Deep learning refers to a collection of supervised or unsupervised machine learning

methods which apply multiple stacked layers of nonlinear processing units to learn

representations of data (Bengio et al., 2013). Deep learning has its origins in neural

network research first carried out in 1943 (McCulloch and Pitts, 1943). Recent develop-
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ments in neural network training algorithms and network architectures have resulted

in state of the art performance in fields as diverse as computer vision (Esteva et al.,

2017), speech recognition (Hinton et al., 2012) and genomics (Alipanahi et al., 2015).

1.4.1 Artificial neural networks

Artificial neural networks are inspired by the principles of neural information pro-

cessing in the brain, where neurons integrate inputs through dendrites, process this

input and activate under certain conditions by relaying an action potential along its

(output) axon. The simplest artificial neural networks organise many such units in

layers feeding forward from inputs to outputs with each neuron or unit in a layer tak-

ing inputs from all units in the previous layer. Figure 1.8a shows a fully connected

neural network with two hidden layers. Each neuron calculates a weighted sum of

its inputs, adds a ”bias” value and then a non-linear activation function is applied

(Figure 1.8a). Rectified linear unit or ReLU is the most popular applied non-linear

activation function as it has been shown this function allows more reliable neural net-

work training when compared to sigmoid or hyperbolic (tanh) activation functions

(Krizhevsky et al.).

Neural network weights are parameters which are learned through a process of

training with data. Most models are trained using an algorithm known as mini-batch

stochastic gradient descent (MB-SGD) and back-propagation (Rumelhart et al., 1986).

One typical use case of neural networks is to predict an output based on input data.
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Figure 1.8: Artificial neural networks.
(a) A small fully connected neural network with two hidden layers. In a fully connected network, each neuron
in a layer is connected to all neurons in the previous layer. Inputs and outputs feed forward to the final output
layer. (b) Each neuron receives multiple inputs, a weighted sum of these is calculated followed by an activation
function, typically ReLU, to calculate the corresponding output.

Training by gradient descent seeks to minimise the error between predicted and real

output by calculating the update gradient for all neurons (gradients calculated by

back-propagation) and updating neuron weights accordingly. Repeated rounds of

gradient updating result in minimisation of neural network output error, also known

as the loss function. Loss function minimisation can be visualised as finding the min-

imum value in the ”loss landscape”, corresponding to the optimal neural network

weight parameters. One difficulty in training neural networks, as with all numerical

optimisation techniques, is the intractable problem of determining whether a point is

a local or global minimum.

1.4.2 Deep learning in genomics

Prodominant genomic analysis approaches follow the pattern of (a) processing raw

genomic data (b) extraction of features associated with genomic sequences, cells or
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tissues (c) dimensionality reduction and clustering of these features, (d) inference of

biological function fromdimensionally reduced representations. Onepotential advan-

tage of machine learning approaches is the opportunity to combine (b)-(d) by training

methods to learn dimensionally reduced representation and infer biological traits con-

currently.

Two recent examples of this end-to-end data analysis paradigm are DeepCpG,

a method for imputation of single cell DNA methylation, and DeepBind, a method

for predicting DNA/RNA-protein binding specificity (Alipanahi et al., 2015; Anger-

mueller et al., 2017a). Both methods allow input of nucleic acid sequence (alongside

sparsemethylation for DeepCpG)without the need for feature extraction. Dispensing

the requirement for some data processing and feature building steps has two key ad-

vantages. Firstly, feature extraction relies on our prior understanding of the data and

can result in unintentional disposal of information. There is a balance between cap-

turing the minimum number of biological features sufficient for the prediction task

and maintaining enough information content to achieve this. Incorporating feature

extraction as part of the machine learning training process ensures a better balance.

Secondly, neural networks are able to learn non-linear relationships between features

and can perform this at multiple levels of feature abstraction. In the example of Deep-

CpG, single cell imputation is a difficult task for traditional computational methods

as it is necessary to account for methylation at multiple genomic scales.
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1.4.3 Generative adversarial networks

Generative adversarial networks (GANs) are an emerging method for unsupervised

and semi-supervisedmachine learning first proposed by IanGoodfellow (Goodfellow

et al., 2014a). The simplest form of GANs are characterised by the concurrent training

of two neural networks in competition (adversarial) with each other, resulting in the

implicit modelling of a data distribution. These two networks are commonly referred

to as the discriminator and the generator, due to their distinct roles (see schematic in

Figure 1.9a). The generator (G) is tasked with transforming some input z (also known

as latent space) into a realistic output x̂ (x̂ = G(z)). GANs are often explained in the

context of an art forgery analogy where the generator is tasked with producing a re-

alistic forgery of an artwork. In contrast, the discriminator (D) is tasked with scoring

the ”authenticity” of an input to determine whether the input is real (x) or forged (x̂),

i.e. D(x). Discriminator and generator networks are trained simultaneously, hence,

as the generator network improves at producing a realistic output the discriminator

network also improves at discriminating between authentic and generated samples.

Each of the two GAN components can consist of any arbitrary network architecture,

typically a combination of fully connected, convolution and recurrent layers.

A key powerful feature of GANs is the ability to learn a mapping from an underly-

ing data distribution (z) to the real data distribution (x). This process is analogous to

the reverse of dimensionality reduction techniques. For example, PCA constructs an

invertible linear mapping from the real data distribution to the principle component
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Figure 1.9: Generative adversarial networks.
(a) GANs consist of two competing neural networks. One network, termed the generator is tasked with trans-
forming an arbitrary input z into a valid output, e.g. an image of a face. The second network, the discriminator,
receives real and generated images as its input and must score these images on their authenticity. Both net-
works are trained sequentially using stochastic gradient descent resulting in incrementally improved perfor-
mance for the generator and discriminator after each training batch. At the conclusion of training the generator
network is capable of producing photorealistic images. (b) Examples of faces generated using ProGAN by (Kar-
ras et al., 2017a).

spacewhere each component is orthogonal. Another example is the Fourier transform,

widely used in signal processing, where data can be decomposed into aweighted com-

bination of sinusoidal functions. Each of these examples require a priori knowledge

regarding the statistical properties of the underlying data distribution. In contrast,

GANs do not require any such assumptions in constructing the mapping learned by

the generator network.

Training of GANs is equivalent to a minimax game in game theory, first formu-

lated by the mathematician John von Neumann (v. Neumann, 1928). That is to say,

an improved set of parameters for one of the networks leads to a worse loss for the

other network. More formally GAN training attempts to solve: maxD minG V(D,G)
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where:

max
D

min
G

V(D,G) = Ex∼p(x)real data [logD(x)] + Ez∼p(z)latent vector [logD((G(z))] (1.1)

i.e. the probability of the discriminator predicting the real data as authentic summed

with the probability of the discriminator predicting that the generated data is not au-

thentic.

There are many practical challenges to GAN training primarily derived from the

instability of competitive optimisation for twoneural networks. Optimisation ofGAN

training is an active area of research and it is expected that future advances will ad-

dress current limitations (Salimans et al.). Common difficulties include mode col-

lapse, where the generator network ”collapses” to generate a small subset or even

one output that scores highly with the discriminator network.

Applications of GANs

The GAN field is relatively nascent and new applications are developing. As is com-

mon with most machine learning methods, initial applications focus heavily on com-

puter vision (Radford et al., 2015; Berthelot et al.; Antipov et al.). Current applications

can be broadly categories into three categories (1) classification and regression, (2)

synthesis, (3) translation.

(1) Classification and regression: GANs appear to process high-dimensional features
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better than any existing unsupervised algorithm for many tasks (Reed et al., 2016b).

Hence, in a parallel study Reed and colleagues reused layers from a trained GAN

and applied these to a different (non-GAN) convolutional neural network (Reed et al.,

2016a). Through this approach they demonstrated broad applicability of the unique

characteristics of GANs.

(2) Synthesis: Once successfully trained, a GAN is by definition a trainedmodel capa-

ble of synthesis of data from the output target distribution. AGANvariant namedPro-

GAN (progressive growing ofGANs) trained on images of celebrities (CelebAdataset)

has demonstrated the ability to synthesise photorealistic images of human faceswhich

are provably distinct from faces in the training dataset (Karras et al., 2017a). Two ex-

ample generated images are shown in Figure 1.9a.

(3) Translation: Another feature of the generator network which has enabled many

new applications is the assumption-free construction of amapping from a latent space

z to a desired data space x. GANs can be applied to construct any desired mapping.

Promising use cases include super-resolution of undersampled images (Ledig et al.,

2016) and image-to-image translation (Zhu and Park, CycleGAN, e.g. translate a

photo taken in the summer to the same location in the winter).
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1.5 Aims of this thesis

The aim ofmy researchwas to utilise amultidisciplinary approach from cell biology to

deep learning in order to understand how epidermal cells make long and short term

cell fate decisions at the single cell level.

I started by investigating the effect ofWnt/β-catenin signalling. My aimwas to de-

couple the effects of autonomous and non-cell autonomous Wnt signalling. In order

to do this I first investigated autonomous Wnt signalling and validated our method

for inducing autonomous Wnt signalling (Chapter 2). Using a combination of single

cell immunofluorescence andbulk gene expression analysis I established the transcrip-

tional effects of autonomous Wnt activation.

Following these results I used single cell RNA-sequencing to determine the sub-

populations present in mouse keratinocyte in vitro cultures (Chapter 3). This subpop-

ulation information was used to map the single cell effects of neighbouring cell Wnt

activation (non-cell autonomous Wnt activation) followed by validation of our find-

ings.

Finally, during my research several public epidermal scRNA-seq datasets became

available, including the dataset described in this thesis. I aimed to integrate these

disparate datasets to uncover gene regulatory relationships governing epidermal cell

state. To do this I developed a method applying generative adversarial neural net-

works which are able to integrate datasets with differing technical variation (Chapter
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4). Using this deep learning approach I was able to simulate the effect of cell state

perturbations, in particular differentiation, for single cells.

In total my experiments and analyses have investigated keratinocyte cell state and

perturbations to cell state. My research on Wnt/β-catenin focused on one specific

perturbation whereas the GAN research in Chapter 4 aimed to predict the effect of

cell state perturbations and to define all possible epidermal cell states.
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Chapter 2

Transient autonomous Wnt signaling

in the epidermis

2.1 Introduction

Mammalian skin comprises many structures including nerves, blood vessels, hair fol-

licles and the interfollicular epidermis (IFE). The IFE forms the outer covering of skin

and functions as a barrier to the external environment through the continual shed-

ding of terminally differentiated keratinocytes. IFE thickness and the position of as-

sociated adnexal structures differ according to location on the body. Epidermis has a

stratified structure and is continually regenerated by stem cells residing in the basal

layer. Epidermal stem cells undergo differentiation in the layers above this basal layer

(suprabasal) and have a high capacity for self-renewal. It has been proposed that stem
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cells divide infrequently and that their division can give rise to either more stem cells

or transit amplifying (TA) cells (Potten, 1981). The latter, TA cells are capable of un-

dergoing division several times before committing to terminal differentiation. Hence,

they are responsible for amplifying the number of differentiated cells produced from

one epidermal stem cell. While this concept has a number of attractive features, it has

been challenged more recently (Jones et al., 2007).

Wnt signalling is involved in skin development at a very early stage (reviewed in

Fuchs (2007)). Furthermore, it has been shown that Wnt/beta-catenin signalling is an

important regulator of epidermal stem cells through its role in epidermal homeostasis

(Choi et al., 2013). In all, Wnt signalling has been implicated in a diverse range of

functions such as maintenance of stemness (Merrill, 2012), control of telomere length

(Hoffmeyer et al., 2012), lineage selection (Lo Celso et al., 2008) and differentiation

(Donati et al., 2014).

Previous studies have attempted to define the exact role of beta-catenin in the skin.

Wnt activity in the epidermis has been shown to be spatially complex and temporally

dynamic (Reddy et al., 2001), hinting that Wnt signalling outcome may depend on

both extracellular environment and intracellular state. Transient nuclear accumula-

tion of beta-catenin accompanied by upregulation of Wnt target genes has been ob-

served during mouse embryogenesis concentrated in hair shaft precursor cells (Das-

Gupta and Fuchs, 1999). Previous studies suggest that sustained beta-catenin activity

can disrupt the normal reaction-diffusion mechanism responsible for hair follicle pat-

terning. Additionally, it has been shown through in vivo xenopus (Moon et al., 1992)
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and mouse (Lo Celso et al., 2004) inducible Wnt/beta-catenin models that varying

the temporal nuclear accumulation of beta-catenin can lead to differing outcomes for

epidermal stem cells. Taken together, these results suggest that there is a different op-

timal in vivo transient activation of beta-catenin signalling for each process regulated

by Wnt such as epidermal stem cell maintenance, commitment to differentiation and

hair follicle formation.

This chapter focuses on twomain aims: (1) validation of an in vitro system for tran-

sient and constitutive Wnt activation (K14ΔNβ-cateninER, extensively used in Chap-

ter 3), (2) characterisation of the transcriptional effects and differences between tran-

sient and constitutive Wnt activation. We define transient as less than three hours

whereas constitutive represents continuous Wnt signalling. Using a combination of

single cell immunofluorescence, mRNA-sequencing and analysis of alternative splic-

ing events we show that the K14ΔNβ-cateninER transgene efficiently activates canon-

ical Wnt signalling and identify a new role for β-catenin in regulation of splicing.

2.2 Results

2.2.1 Nuclear beta-catenin dynamics

K14ΔNβ-cateninER mice were previously generated in the lab (Lo Celso et al., 2004).

TheΔNβ-cateninER constructwas initially generated by in frame fusion ofN-terminally

truncated β-catenin (nucleotides 715-2604) to the ligand binding domain of a mutant
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Figure 2.1: K14ΔNβ-cateninERWnt activation construct.
Upper: K14ΔNβ-cateninER construct consists of the Keratin-14 promoter driving the expression of ΔNβ-
cateninER. A β-globin intron was inserted 5’ with respect to ΔNβ-cateninER and Keratin-14 polyA sequence
inserted 3’ in order to enhance expression of the fusion transcript. Lower: Immunofluorescence for β-catenin
demonstrating increased nuclear abundance upon addition of 4OHT. Scale bar: 25μm.

murine estrogen receptor (ER), unable to bind endogenous oestrogen. Transgenic

mice were generated by pronuclear injection of the construct into fertilised mouse

embryos at day-1. Keratinocytes were isolated and cultured from the back skin of

K14ΔNβ-cateninERmice as well as matchedwild typemice. Both populations of cells

underwent spontaneous immortalisation (see Romero et al. (1999)). It was confirmed

that both sets of cells are able to grow in feeder-free conditions.

The upper portion of Figure 2.1 shows a schematic of the K14ΔNβ-cateninER con-

struct. The beta-cateninER fusion protein is constitutively expressed under control

of a Keratin-14 promoter, providing selective expression in basal epidermal cells. In

vitro, we expect to constitutively express the K14ΔNβ-cateninER construct in cells

maintaining an epidermal stem cell identity. Without activation of the fusion pro-

tein, the beta-cateninER protein accumulates in the cytoplasm. In the presence of

4-hydroxytamoxifen (4-OHT) the ER domain of the fusion protein changes confor-
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mation to an activated state thus allowing translocation of beta-catenin from the cyto-

plasm to the nucleus.

We performed an initial experiment to validate the inducible beta-catenin con-

struct in vitro. Wild type andΔNβ-cateninER cellswere treated for 48 hours inmedium

containing 4-OHT or an ethanol control. Function of our construct was confirmed us-

ing immunofluorescence for beta-catenin. Staining for beta-catenin showed amarked

difference in nuclear intensity between treated ΔNβ-cateninER cells and control con-

ditions (Figure 2.1, lower). These results confirmed that we are able to induce translo-

cation of beta-catenin from the cytoplasm to the nucleus with this system.

We next investigated two important characteristics of the system: nuclear beta-

catenin dynamics over time and how activation time affects markers of cell state.

For these experiments immunofluorescence was used in combination with high con-

tent screening using the PerkinElmer Operetta. The Operetta allows high-throughout

imaging of immunofluorescence stained 96-well plates. Coupling this approach with

image processing software (Harmony andR) it is possible to quantify cytoplasmic and

nuclear fluorescence at single-cell resolution.

In order to investigate the dynamics of beta-catenin translocation and its effects on

cell state, we performed a time-course experiment. Four different activation scenarios

were considered. We induced canconical Wnt signaling in the cells for 1, 3 and 24

hours alongside a control condition without activation. For each of these activation

conditions, nuclear beta-catenin intensity was evaluated at +0, 3, 9 and 24 hours after
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Figure 2.2: Nuclear Β-catenin afterWnt activation.
Nuclear Β-catenin dynamics after 1 hour, 3 hour and 24 hours of Wnt activation for K14ΔNΒ-cateninER ker-
atinocytes compared to control. Errors bars are standard error (SE) ± mean. Nuclear beta-catenin measured in
arbitrary units (a.u.) of fluorescence.

withdrawal of 4-OHT media as shown in Figure 2.2.

In the 1h and 3h activation conditions we observed an increase in nuclear beta-

catenin until our final +24 hours timepoint. In comparison, there was little increase

in the proceeding +24 hours of timepoints after the 24 hour Wnt activation condition.

We interpreted this as meaning that 24 hours of constitutive activation saturates the

maximum concentration of nuclear beta-catenin we can achieve using our system. In-

triguingly, we observed that a 1h activation + 24 hours showed a higher abundance of
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nuclear beta-cateninwhen compared to later timepoints in the 3 hour and 24 hour con-

stitutive activations. We hypothesised that this was the result of a positive feedback

gene expression circuit that allows a cell to obtain a higher level of nuclear beta-catenin

whenWnt signalling is transiently activated for a short period of time. In contrast, con-

stitutive activation results in a stronger negative feedback effect resulting in a lower

concentration of nuclear beta-catenin.

2.2.2 Nuclear Lef1 and BLIMP1 dynamics following Wnt activation

Lef1 is a transcription factor which functionally interacts with beta-catenin as well as

being directly downstreamofWnt and beta-catenin signaling activation. We sought to

understand whether Lef1 nuclear abundance was differentially affected by transient

Wnt activation. Figure 2.3a shows immunofluorescence of Lef1 and beta-catenin for

control andWnt activatedΔNβ-cateninERkeratinoctyes 24 hours after beta-catenin ac-

tivation. Nuclear fluorescence intensity was quantified for both Lef1 and beta-catenin

for 1 hour, 3 hour and 24 hour induction times. All induction timepoints showed sig-

nificantly increased nuclear Lef1 compared to control. The shortest activation, 1hr,

showed the greatest increase in nuclear Lef1, supporting our hypothesis that a tran-

sient increase in nuclear beta-catenin leads to higher levels of nuclear beta-catenin and

expression of downstream target genes.

We performed a similar analysis for BLIMP1, another transcription factor which

has been shown to be downstream of beta-catenin activation. Unlike Lef1, BLIMP1
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Figure 2.3: Nuclear LEF1 afterWnt activation.
(a) Immunofluorescence of β-catenin and LEF1 in control and Wnt activated (24hr) conditions. (b) Nuclear LEF1
abundance (arbitrary units) in single cells after 24 hours after 1hr, 3hr or 24hr Wnt activation compared to
control. Scale, 100μm.

is not known to functionally interact with beta-catenin. Hence we sought to under-

stand whether the transient positive feedback behaviour exhibited by beta-catenin

and Lef1 extended to non-interacting proteins. All beta-catenin activation conditions

showed significantly increased nuclear BLIMP1 in comparison to control (Figure 2.4a,

p < 0.05, Kolmogorov-Smirnov test). Similarly to Lef1, the 1hr transient activation

resulted in the greatest accumulation of nuclear BLIMP1. We further analysed the re-

lationship between nuclear BLIMP1 and nuclear beta-catenin at the single cell level.

Figure 2.4b shows the nuclear abundance of these twoproteins in over 3000 cells under

control and 1hr transient activation conditions. We observed that nuclear abundance

of these two transcription factors is highly correlated (r2 coefficient of determination

of 0.85) indicating that these TFs are either co-regulated or one is directly regulating

the other. After 1hr transient induction (+23 hr) this correlation is maintained (r2 of

0.85) however the median nuclear abundance for both proteins increases, indicating
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Figure 2.4: Relationship between BLIMP1 andWnt activation.
(a) Nuclear BLIMP1 intensity (arbitrary units) 24 hours after 1hr, 3hr and 24hr activation compared to con-
trol (no activation). (b) Relationship between nuclear BLIMP1 and β-catenin in unactivated (control) and Wnt
activated (treated, 24 hours after 1hr activation). r2: coefficient of determination.

that BLIMP1 is likely to be a direct transcriptional target of beta-catenin.

2.2.3 Epidermal targets of Wnt/beta-catenin activation

We next sought to investigate the transcriptome-wide effects of transient and consti-

tutive Wnt signaling. Downstream targets of Wnt/beta-catenin signaling are difficult

to define in the skin using existing public data. One approach is to assume that tar-

gets that are differentially expressed upon activation of Wnt signaling in other model

systems such as the intestine are also targets in the epidermis. Another approach is

to utilise non-epidermal public data indicating where beta-catenin binds across the

genome, i.e. chromatin immunoprecipitation sequencing (ChIP-seq). Both of these

approaches have the disadvantage of ignoring skin-specific transcriptional targets,

particularly important as beta-catenin is a co-factor and cannot activate transcription

alone. Hence, beta-catenin binding of regulatory elements such as enhancers and pro-
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moters can be the result of combinatorial binding with a variety of tissue-specific and

non-specific co-factors including Lef1, Bcl9, Pygo (Cantù et al., 2017).

We performed bulk mRNA-sequencing of control, 1hr transient activation and

24hr constitutive activation conditions to determine transcriptome-wide gene expres-

sion changes. This allowed us to determine Wnt/beta-catenin target genes specific to

either transient or constitutive activation as well as genes differentially expressed un-

der both conditions. Figure 2.5 (upper) shows a volcano plot contrasting gene expres-

sion in the 1hr and 24hr activation conditions against control samples. We found 1404

genes differentially expressed after transient Wnt activation and 1492 genes differen-

tially expressed under constitutive activation. We noted that both conditions were

significantly enriched for differentially expressed long non-coding RNAs (lncRNA,

1hr n = 430, 24hr n = 439, p < 0.05, hypergeometric test). The locations of these non-

coding transcripts can be categorised into three main groups: (1) located within the

gene bodies of protein-coding genes, (2) located in intergenic regions nearby differen-

tially expressed protein-coding genes and (3) located more than 200kb from the near-

est differentially expressed gene. We excluded genes located within the gene bodies

of differentially expressed genes to avoid misappropriating differential expression of

these transcripts (Figure 2.5, lower).

Focusing on differentially expressed protein-coding genes, we were able to con-

firm efficient activation of the canonical Wnt pathway by examining expression of

Axin2, a marker of Wnt activation and negative regulator of the Wnt pathway in mul-

tiple tissues (Jho et al., 2002). In both the 1hr and 24hr activation conditions Axin2was
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Figure 2.5: Genes differentially expressed in transient or constitutiveWnt activation.
Volcano plots showing differentially expressed genes for 1hr and 24hr Wnt activation relative to control. Upper
panels show all genes, lower panels show genes excluding long non-coding RNAs.
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upregulated over ten-fold relative to control (adjusted p-value = 3.2e-3). Furthermore,

72% of identified differentially expressed genes were also identified in vivo by a pre-

vious study in our lab, demonstrating the relevance of our in vitro activation model

(Donati et al., 2014).

Both sets of differentially expressed genes were highly enriched for epidermal spe-

cific Gene Ontology terms such as epidermis development and epidermis morpho-

genesis (Figure 2.6a and 2.6b). Finally we examined Gene Ontology enrichment for

genes differentially expressed in both activation condition (2.6c). This yielded simi-

lar results, however three RNA-binding related Gene Ontology terms were present

amongst the most significant terms. This enrichment alongside the differentially ex-

pressed lncRNAs suggested that a common effect ofWnt activation in both conditions

involved the perturbation of RNA-binding proteins and non-coding RNAs.

2.2.4 Transcriptional differences between transient and constitutive

Wnt activation

In addition to determining targets of Wnt activation, we contrasted transient (1hr)

and constitutive (24hr) activation of the Wnt pathway to determine transcriptional

targets that are sensitive to duration ofWnt signalling. Figure 2.8 shows a volcano plot

contrasting expression of genes in these two conditions. In contrast to our previous

immunofluorescence assays of beta-catenin, LEF1 and BLIMP1 where we observed a

strong difference, we found fewer than 200 differentially expressed genes with fewer
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Figure 2.6: Gene ontology enrichment analysis for beta-catenin regulated genes.
Gene ontology enrichment analysis for genes differentially expressed between (a) 1hr and control, (b) 24hr and
control, and (c) genes commonly differentially expressed in both 1hr and 24hr activation conditions vs. control.
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RBM25, HSP90AB1, DDX49, MRPS14, CCDC124, GDI2, HNRNPU, FAM208A,
TCF20, YBX1, ADARB2, IFIT1, SPOUT1, RRP9, CWC22, RPL36, RPS10, LRRC47,
DSP, CCT3, CAST, EIF5B, ANXA2, ZCRB1, YWHAZ, FAM133B, EEF1A1,
PKM, SLTM, HNRNPUL2, RPL26, SNRPC, FKBP3, SKIV2L2, STAU1, AHNAK,
ANP32A, USP10, CSTF3, MAK16, NOL7, NOL8, RRBP1, ATXN2, S100A16,
CTNNA1, RBBP6, EIF4B, RPL41, CPSF6, API5, KRR1, DEK, RPS26, ALDH6A1,
H1F0, CAPRIN1, SERBP1, TSR1, HDGF, CEBPZ, SLIRP, EIF3A, EIF3B, METAP2

Figure 2.7: Differentially expressedmRNA-binding proteins.

than 10 genes up- or down-regulated at biologically meaningful log fold change and

stringent statistical significance (log fold change > 1 and -log(p-value) > 5 represented

by green region in Figure 2.8). From the few differentially expressed genes, one gene

of interest is Notum, whichwas upregulated four-fold in the 24hr activation condition

relative to 1hr activation. Notum is an extracellular protein with carboxyl oxoesterase

activity and is known to deacylaseWnt ligands. Through this mechanism, Notum has

been shown to strongly suppress Wnt signalling activity (Kakugawa et al., 2015).

Our results show that transcription of Notum is activated under constitutive Wnt

signalling but not after transient Wnt signalling. We hypothesise that under consti-

tutive Wnt activation, deacylation of endogenous Wnt ligands by Notum in vitro re-

sults in lower nuclear beta-catenin abundance. In contrast, transient Wnt signalling

does not lead to upregulation of Notum, with the consequence of greater nuclear

beta-catenin abundance. Furthermore, few genes are differentially expressed between

constitutive and transient activation conditions. Hence, we hypothesise that post-

transcriptional mechanisms are likely to be contributing to differences between tran-

sient and constitutive Wnt activation.
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Figure 2.8: Genes differentially expressed between transient and constitutiveWnt activation.
Volcano plot showing differentially expressed genes between 1hr and 24hr Wnt activation (log fold change is
1hr vs. 24hr). Labelled genes are differentially expressed at log fold change > 1 and significant at -log(p-value) >
5. Red line denotes significant differential expression threshold.
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2.2.5 Epidermal Wnt/beta-catenin activation regulates intron reten-

tion

There is a growing body of evidence that lncRNAs regulate mRNA splicing along-

side established roles such as translational repression (Romero-Barrios et al., 2018).

In addition, in colon cancer cells beta-catenin has been shown to regulate alternative

splicing of oncogenic transcripts (Lee et al., 2006). The presence of multiple differ-

entially expressed RNA-binding proteins for both Wnt activation conditions (see Box

2.7) indicates that post-transcriptional regulatorymechanisms are downstreamofWnt

signalling. To examine whether Wnt activation regulates alternative splicing in ker-

atinocytes we usedWhippet, a recently developed method for detection and quantifi-

cation of alternative splicing events (Sterne-Weiler et al., 2017). We identified similar

numbers of alternative splicing events in control, 1hr and 24hr activation conditions

(n=9950, 9624 and 9946 splice nodes respectively).

Alternative splicing (AS) events assessed by Whippet fall into six main categories:

retained introns (RI), core exons (CE), alternative first exons (AF), alternative last ex-

ons (AL), alternative donor (AD) and alternative acceptor (AA) splice sites. In all

samples, over half of all AS events comprise alternative acceptor and donor events

which are 5’/3’ ungapped shortening or extension of exons. From these categories,

retained introns showed the greatest change between control andWnt activation con-

ditions, with approximately 10% fewer retained intron events in both Wnt activation

conditions relative to control. The 1hr and 24hr activation conditions showed similar
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Proportion of alternative splicing events detected in control, 1hr and 24hr activation conditions. RI - retained
intron, CE - core exon, AL - alternative last exon, AF - alternative first exon, AD - alternative donor splice site,
AA - alternative acceptor splice site.

proportions of AS events for all categories.

Focusing on retained introns, we contrasted control samples against both 1hr and

24hr activated samples to determine retained intron events which were insensitive to

Wnt activation time. We applied a high stringency threshold (p-value < 0.01, ΔΨ >

0.3, Ψ/PSI, percent spliced in) to obtain high confidence transcripts with differential

retained introns relative to control. Figure 2.10a & 2.10b show two examples of iden-

tified retained intron events. Keratinocyte associated protein 3 (Krtcap3) shown in

Figure 2.10a demonstrates increased retention of the intron between exon 4 and exon

5 with longer beta-catenin activation. Fused in sarcoma (FUS) shown in Figure 2.10b

is another interesting example. Here, the intronic region between exons 14 and 15
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Figure 2.10: Example retained intron events.
Two examples of retained intron events, (a) shows the intronic region between exon 4 and exon 5 for Krtcap3,
(b) shows the intronic region between exon 14 and exon 15 for Fus. Both examples show differentially retained
introns between Wnt activation conditions and control (adjusted p-value < 0.05).

for Fus show highest intron retention in the control samples and this is reduced upon

beta-catenin activation. Fus mutations have been causally linked to RNA processing

defects in familial amyotrophic lateral sclerosis (ALS) (Kapeli et al., 2017). Further-

more, a recent study of intron retention in ALS demonstrated that RNA-binding pro-

teins and regulators of RNA processing such as Fus are the targets of intron retention

(Luisier et al., 2018).

We identified 482 transcripts for the 1hr activation and 508 transcripts for the 24hr

condition with 202 introns differentially retained in common (Figure 2.11a). These

genes include known functional epidermal proteins such as Sprr2h, Krt7, Itga7 and

Krtcap3. Gene ontology enrichment showed the 202 genes to be highly enriched for

mRNA-binding, regulation of splicing and for proteins localised to nuclear speckles

as shown in Figure 2.11b. This suggests an unexpected feedback loop where activa-

tion ofWnt signaling results in an increase of retained intron events within transcripts

that themselves are regulators of splicing. We next compared intron retention for the
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Figure 2.11: Retained introns insensitive toWnt activation time.
(a) Venn diagram showing the overlap between stringent differential retained intron analysis for 1hr vs control
and 24hr Wnt activation vs. control. Overlap represents introns which are differentially retained regardless of
Wnt activation time. (b) Gene ontology enrichment analysis of common retained intron genes. (c) Relationship
between ΔPSI for transient and constitutive activation.

202 common introns. Figure 2.11c shows differential intron usage between activa-

tion conditions and control. We found only one transcript, for the gene Histone H4

Transcription Factor (Hinfp), which showed significant differential intron usagewhen

comparing 1hr and 24hr activation conditions. These results suggest that beta-catenin

regulation of intron retention requires only a short duration of pathway activation

(one hour) and is sustained under constitutive activation conditions.

2.3 Conclusions

In this chapter we validated an in vitro system forWnt activation (K14ΔNβ-cateninER)

and used this to investigate transcriptional differences between transient and consti-

tutive activation. In line with transcriptional effects of Wnt activation in other tissues

such as the intestine, we found upregulation of canonicalWnt target genes under both

transient and constitutive activation. Previous in vivo data by Lo Celso et al. from our
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lab showed that transient activation of Wnt signalling in murine epidermis leads to

the formation of a new hair follicle growth, potentially via specification of susceptible

cells to a hair follicle lineage.

Using K14ΔNβ-cateninER keratinocytes, we have shown that transient and con-

stitutive activation of epidermal cells leads to distinct cell states by altering levels of

key transcription factors (BLIMP1, LEF1). Furthermore, in the case of constitutive ac-

tivation, negative feedback in the Wnt pathway is activated through upregulation of

Notum, a suppressor of Wnt signalling. Notum’s role in epidermal Wnt signalling re-

quires further validation, in particular whether inhibition of Notum results in higher

levels of nuclear beta-catenin under constitutive activation conditions. Unpublished

data within the lab and observations by Gernot Walko and Angela Oliveira Pisco in-

dicate that keratinocytes in vitro are insensitive to Wnt pathway activation through

Wnt ligands. Notum acts by deacylating and inactivating Wnt ligands, and hence it

would be of interest to investigate whether these observations are the result of Notum-

mediated Wnt inactivation.

Finally, by analysingRNA-sequencingdata for alternative splicing events, wehave

shown for the first time a link between Wnt activation and intron retention. Using

Whippet, an alternative splicing bioinformatic tool, we established normal alternative

splicing activity under control conditions for epidermal keratinocytes and contrasted

these to constitutive and transient Wnt activation. Intriguingly, we observed that in-

tron retention ismost prominent underWnt activated conditions for transcriptswhich

are themselves regulators of splicing.

56



Taken together this chapter validatesWnt activation using the K14ΔNβ-cateninER

system and elucidates how Wnt signalling is able to encode for multiple cell state

outcomes by differing in outcome depending on time of activation. Our findings on

intron retention further highlight howWnt signalling is able to regulate multiple cell

states through a combination of transcriptional activation and regulation of splicing.

2.4 Methods

2.4.1 Cell biology

Wnt activation in K14ΔNβ-cateninER keratinocytes

K14ΔNβ-cateninER transgenicmicewere generated as previously described (LoCelso

et al., 2004). The ΔNβ-cateninER construct was initially generated by in frame fusion

of N-terminally truncated β-catenin (nucleotides 715-2604) (Zhu and Watt, 1999) to

the ligand binding domain of a mutant murine estrogen receptor (ER), unable to bind

endogenous oestrogen (Littlewood et al., 1995). Transgenic mice were generated by

pronuclear injection of the construct into fertilised mouse embryos at day 1.

Cell isolation and culture

The following cell isolation and culture protocols have been described previously by

Jensen et al. (2010).
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Culture medium for 3T3-J2 fibroblasts (feeder cells)

Feeder cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM) contain-

ing 10% bovine serum (Gibco) supplemented with 100IU/mL penicillin (Life Tech-

nologies), 100µg/mL streptomycin (Life Technologies). Medium was stored at 4°C.

Mitomycin C for feeder cell mitotic inactivation

To prepare a 100x (o.4mg/mL) stock solution of Mitomycin C, 2mg of Mitomycin C

powder (Sigma-Aldrich) was dissolved in 5mL of Milli-Q water. The solution was

sterilised using a 0.22µm filter (Millipore). Stock solution was aliquoted and stored at

-20°C.

Tamoxifen for activation of K14ΔNβ-cateninER cells

For activation of Wnt signalling, cells were treated with 4-OHT (200nM) or ethanol as

a control. For 4-OHT stock, powder was dissolved in ethanol to form a 1000x (2mM)

stock solution and aliquoted to be stored at -20°C. 4-OHT was added to room temper-

ature medium immediately before experiments.

Culture medium for mouse keratinocytes

We cultured mouse keratinocytes in Calcium-free FAD medium (one part Ham’s F12,

three parts Dulbecco’s modified Eagle’s medium, 1.8×10-4 M adenine), supplemented
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with 10% foetal calf serum (FCS) and a cocktail of 0.5 μg/ml hydrocortisone, 5 μg/ml

insulin, 1×10-10 M cholera enterotoxin and 10 ng/ml epidermal growth factor (HICE

cocktail) (Watt et al., 2006).

Cell isolation from mouse back skin

Shaved back skinwas sterilised using 10%betadine solution for twominutes followed

by two sterilisation baths in 70% ethanol solution for 1 minute each. Tissue was sub-

sequently washed for 1 minute in sterile PBS. After this point we ensured that all

further equipment coming into contact with the tissue is sterilised. Muscle and fat

was scraped from the underside of the tissue using a scalpel. To facilitate separation

of dermis and epidermis, skin was then incubated overnight (epidermal side facing

up) in 0.25% trypsin (Life Technologies) without EDTA at 4°C. On the following day

epidermis was scraped away from the dermis using sterile scalpels and subsequently

minced using two scalpels. Minced epidermal tissue was resuspended in complete

low calcium FAD medium and filtered through a 70µm cell strainer (BD Biosciences).

The resulting cell suspension was centrifuged at 500g for 8 minutes at room tempera-

ture to form a cell pellet. Next the cell pelletwas resuspended in low calcium complete

FAD medium and plated for cell culture.
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Culture of mouse keratinocytes

Mouse keratinocytes were either seeded onto mitotically inactivated feeder cells (if

primary) or cultured in feeder-free conditions if immortalised. For routine cell cul-

ture keratinocytes were seeded at a density of 2.5 × 105 cells per T75 flask and cul-

tured in complete low calcium FAD medium in an incubator with 8% CO2 at 32°C.

Medium was replaced every 48-72 hours and cells were passaged when confluent ap-

proximately 7 days after plating. In cultures with feeders, prior to passaging feeders

were first removed by incubating cells in Versene for five minutes at room tempera-

ture followed by tapping on the side of the flask to free feeders form the flask surface

leaving attached keratinocytes. Keratinoctyes were next incubated in 0.05% trypsin

solution diluted in Versene for 3-8minutes until keratinocytes detached from the flask

surface. Detached cells were suspended in 5mL of complete FAD medium (to inacti-

vate trypsin) and centrifuged for 5 minutes at 500g to form a cell pellet. Supernatant

was aspirated above the cell pellet and cells were resuspended in fresh medium for

counting with a haemocytometer to determine cell density. Cells were then replated

as appropriate.

Storage and freezing of mouse keratinocytes

For long term storage, cells were detached and cell pellets formed as above. Super-

natant was removed and replaced with FBS containing 10% DMSO (Sigma-Aldrich).

Cells were resuspended at a density of 1× 106 cells per mL. Cell suspension was tran-
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ferred to 1mL cryovials. To minimise the stress of freezing on cells, cryovials were

stored overnight in a container filled with isopropanol at -80°C to ensure a constant

cooling rate. After 24 hours cells were transferred to a liquid nitrogen cell bank for

long term storage.

2.4.2 Immunofluorescence and high-content imaging

Immunofluorescence staining

The following antibodies were used: β-catenin (1:250, Sigma C2206), Blimp1 (1:250,

Santa Cruz, sc-47732), Lef1 (1:250, Abcam, ab137872).

Cultured cells were fixed with 4% PFA for 10 minutes followed by permeabilisa-

tion with 0.1% Triton X-100 for 10 minutes at room temperature. Cells were blocked

for 1 hour at room temperature with 1% BSA in PBS. Primary antibody incubation

was carried out for 90minutes at room temperature. Sampleswere labelledwithAlexa

Fluor (488, 555, 647)- conjugated secondary antibodies for 1 hour at room temperature.

Cells were imaged within 24 hours using an Operetta or Operetta CLS High-content

Imaging System (PerkinElmer). Single cell cytoplasmic and nuclear fluorescence in-

tensities were quantified with Harmony software (PerkinElmer) and analysed in R.
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2.4.3 Bulk mRNA-sequencing and analysis

Bulk RNA extraction, library preparation and sequencing

Total RNA was purified with the RNeasy mini kit (Qiagen) with on-column DNaseI

digestion, according to the manufacturer’s instructions. RNA quality was assessed

using the RNA ScreenTape system (Agilent), all libraries scored greater than 9.6 on

the RNA integrity number (RIN) scale. RNA-sequencing libraries were made with a

TruSeq RNA Sample Preparation Kit V2 according to the manufacturer’s instructions

and were sequenced using the HiSeq 2500 System with 75bp paired-end reads. Li-

braries were sequenced to a depth of 15-26 million reads per sample at the Advanced

Sequencing Facility (Francis Crick Institute).

Processing of reads and quality control

Sequenced libraries were checked for quality control and common sequencing errors

(e.g. high adapter contamination) using FastQC and Cutadapt to trim adapter se-

quences (Martin, 2011). Sequenceswere aligned to theMusMusculus genome (GRCm38)

using STAR (Dobin et al., 2013) discardingmultiply-mapped reads. Gene level counts

were extracted using featureCounts (Liao et al., 2014). Transcript levels were quanti-

fied as transcripts per million (TPM). Differentially expressed genes were determined

using DESeq2 (Love et al., 2014).
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Alternative splicing analysis

We used Whippet (v0.6, Sterne-Weiler et al. (2017)) to analyse RNA-Seq data to iden-

tify alternative splicing events. Whippet creates comprehensive splice graphs required

for quantification of exon and intron usage. Genome annotation files were obtained

from Ensembl and Whippet was run using default settings to obtain percent spliced

in (PSI) usage for splice nodes. Nodes are defined as non-overlapping exons which

together form the alternative splicing event graph of all possible alternative splicing

combinations. Differential splice node usage was quantified using Whippet-delta.

63



Chapter 3

Non-cell autonomous Wnt signalling

3.1 Introduction

The mammalian epidermis comprises interfollicular epidermis (IFE), hair follicles, se-

baceous glands and sweat glands. Under steady-state conditions, each of these com-

partments is maintained by distinct populations of stem cells. However, following

wounding each stem cell subpopulation exhibits the capacity to contribute to all dif-

ferentiated lineages (Page et al., 2013). Recent single-cell gene-expression profiling

of adult mouse epidermis identified multiple epidermal subpopulations (Joost et al.,

2016). Furthermore, in cultures of human and mouse keratinocytes there are three or

more subpopulations with varying proliferative potential (Roshan et al., 2016; Jones

and Watt, 1993).

One pathway that plays a key role in regulating stem cell renewal and lineage
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selection in mammalian epidermis is Wnt/beta-catenin signalling, which is an im-

portant regulator of epidermal maintenance, wound repair and tumorigenesis (Lim

and Nusse, 2013; Watt and Collins, 2008). Gene-expression profiling has identified a

number of signalling pathways that are regulated by cell-intrinsic activation of beta-

catenin. Wnt signalling is indispensable for adult epidermal homeostasis; loss of beta-

catenin in the IFE causes a defect in stem-cell activation, resulting in reduced basal

layer proliferation and IFE thinning (Choi et al., 2013; Lim et al., 2013) and loss of hair

follicles. Conversely, transient activation of epidermal beta-catenin in the adult epi-

dermis leads to expansion of the stem-cell compartment and results in the formation

of ectopic hair follicles at the expense of the sebaceous glands and an increase in IFE

thickness (Silva-Vargas et al., 2005; Lo Celso et al., 2004).

There is good evidence that intrinsic beta-catenin activation in epidermal keratinocytes

leads to effects on neighbouring epidermal cells. For example, in the mouse hair folli-

cle, activated mutant beta-catenin cells can co-opt wild type cells to form a new hair

growth through secretion ofWnt ligands (Deschene et al., 2014). This form of non-cell

autonomous (NCA) activation suggests that autonomousWnt signalling has the capa-

bility of changing neighbour cell fate. Although the mechanisms of autonomous Wnt

activation are well described, it is unclear how NCA effects differ to cell intrinsic ef-

fects and how beta-catenin can simultaneously regulate self-renewal while changing

the fate of neighbouring cells.

In this studywe set out to analyseNCAsignalling inwild typemouse keratinocytes

thatwere co-culturedwith keratinocytes inwhich beta-cateninwas activated. This has
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Figure 3.1: Quality control metrics for single cell libraries.
(a) Relationship between number of aligned reads and number of gene expressed above a threshold (TPM>1).
(b) Gene expression barplots for two example uniquitously expressed genes, Gapdh and Actb.

revealed previously unknown heterogeneity of wild type mouse keratinocytes and

elucidated the effect of Wnt signalling on neighbouring cell state and heterogeneity.

3.2 Results

3.2.1 Single-cell mRNA-seq analysis of basal epidermal stem cells

To explore the effects of non-cell autonomous Wnt signalling on epidermal cell state

we sequenced the transcriptomes of singlewild typemurine keratinocytes co-cultured

with cells expressing an inducible form of stabilised beta-catenin (K14ΔNβ-cateninER)

in a ratio of 9:1. We compared cells cultured in the absence of 4-hydroxy-tamoxifen

(4OHT) with cells treated for 24h with Tamoxifen to induce beta-catenin. Cells were

then disaggregated, loaded onto the C1 96-well microfluidic device (Fluidigm) and
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Figure 3.2: Read alignment distribution for single cell libraries.
Stacked proportional barplot showing read alignment coverage distribution for all cells before QC filtering.
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captured for sequencing. Owing to the single-cell capture method used, highly kera-

tinized and terminally differentiated cells over 20 microns in diameter were excluded.

We identified K14ΔNβ-cateninER cells by aligning reads to the transgene sequence

and subsequently removed these cells from analysis (10 untreated cells and 14 acti-

vated cells). After quality control we retained 125 wild type control cells and 129 wild

type cells exposed to Wnt signalling neighbours. We recorded a median of 641,000

reads per cell equating to 4,000-8,000 genes expressed per cell as shown in Figure 3.1a

(transcripts per million, TPM > 1). The majority of cells showed high expression of

Gapdh and Actb, two genes we expect to be ubiquitously expressed regardless of cell

type or cell state (Figure 3.1b). Read alignment distribution was in line with other

single-cell RNA-seq datasets with minimal ribosomal and intergenic reads (Figure

3.2).

To explore cell-state heterogeneity in wild type keratinocytes that had not been
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Figure 3.3: Molecular heterogeneity of epidermal cells in culture.
(a)Epidermal cell transcriptomes and cell state relation visualised using DDRTree and coloured according to
unsupervised clustering. Each data point is one cell and axes are dimensionally reduced components of the
cell transcriptomes. Colours and numbers represent the five identified cell states. (b) Gene expression for four
marker genes shown for each cell on the state map. Top left: Integrin beta-1 (Itgb1), a basal IFE marker. Top
right: S100 differentiation associated genes. Bottom left: Mt2, a basal IFE marker. Bottom right: Keratin 10, a
suprabasal IFE marker of commitment to differentiation.

exposed to a neighbour in which beta-catenin was activated (untreated samples) we

used reverse graph-embedding, a machine-learning technique. This enabled us to re-

construct a parsimonious tree connecting all observed epidermal cell states (DDRTree,

Monocle 2, Trapnell et al. (2014)). We applied the DDRTree algorithm to wild type

cells using expressed genes (TPM > 1) after removing cell-cycle associated genes. We

identified five distinct in vitro cell states (Figure 3.3a) forming three major branches

representing varying states of proliferation and differentiation.

States A and E showed highest expression of Mt2 a basal IFE marker alongside

markedly low expression of S100 epidermal differentiation complex genes in compar-

ison with the remaining subpopulations. These expression patterns indicate states

A and E represent transcriptomic signatures prior to commitment to differentiation
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and all collagen mRNAs (right). Bars are coloured by cell state identity.

(Figure 3.3b; upper left) (Kypriotou et al., 2012). Itgb1, another marker of basal IFE

cells showed variable expression in vitro in comparison to Mt2, but is expressed in all

cells (Figure 3.3b; upper right). Similarly the differentiation marker Krt10 is variably

expressed across all subgroups (Figure 3.3b; lower right) (Jones and Watt, 1993). Sep-

aration between pre- and post-commitment cell states is further apparent when look-

ing at pan-keratin and pan-collagen gene expression. In vivo, keratinocytes commit to

differentiation upon detaching from the basement membrane reducing the need for

collagen expression and increase in overall keratin content. States B, C and D express

significantly more keratin mRNAs and conversely states A and E are characterised by

higher collagen mRNA levels (Figure 3.4; Kolmogorov-Smirnov test, p < 0.05).

For each cell state we determined genes differentially expressed versus the remain-

der of the population and identified between 6 (State B) and 101 (State C) markers

(Figure 3.5a). We observed that the median expression of the top three markers for

each state was sufficient to distinguish each state (Figure 3.5b)
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To determine the putative biological function of each cell state we correlated the

single-cell signatures with a comprehensive set of IFE subpopulation expression pro-

files identified by Joost and colleagues. We further integrated two other bulk gene-

expression studies which identified signatures for proliferative and nonproliferative

epidermal stem cells (Zhang et al., 2009; Lien et al., 2011). From comparison with the

Joost IFE subpopulations, all of our single cells correlate strongly with basal IFE stem

cells, as expected since large (> 20μm) terminally differentiated cells were excluded

from the analysis (Figure 3.6a). States A and to a lesser extent State E showed high cor-

relation with an isolated subpopulation of non-proliferative self-renewing epidermal

cells characterised by Lien and colleagues (Figure 3.6b).

We concluded that states A and E both exhibit a self-renewing cell gene expression

signature but differ in proliferative state. States B, C and D formed a branch of the cell
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trajectory representing early commitment to differentiation, characterized by expres-

sion of proliferation associated genes from Roshan et al. (2016) (e.g. MRPL33, YY1)

and correlated strongly with the expression profile of proliferative keratinocytes from

Zhang et al. (2009). This branch of the state tree shows expression of early differentia-

tion markers such as MXD1, Dsc2, Dsg3 (Salehi-Tabar et al., 2012) and highest expres-

sion of S100 early differentiation-associated genes. Figure 3.3 summarises the state

classification of cells as determined by our cluster and DDRTree analysis highlighting

the relationship between our three branches composed of five identified keratinocyte

cell states.

72



K14ΔNβ-cateninERWild type K14ΔNβ-cateninER + 4OHT

β-
ca

te
ni

n

a b

Wild
 ty

pe

-ca
ten

inER
0

100

200

300

400

500

Nuclear -catenin

N
uc

le
ar

 
-c

at
en

in
 (A

U
)

*

n.s.

Control

+ 4OHT

Figure 3.8: Induction of canonicalWnt signalling in a subpopulation of cells.
(a) Immunofluorescence showing cytoplasmic and nuclear beta-catenin in WT and K14ΔNβ-cateninER ker-
atinocytes after induction of canonical Wnt signalling using 4OHT. Scale bar, 20 μm. Images are duplicated
from Chapter 1, Figure 2.1. (b) Quantification of mean nuclear beta-catenin fluorescence intensity (n = 3 inde-
pendent cultures).

3.2.2 Inducible Wnt signalling

In a previous study we generated gene-expression profiles from wild type and beta-

catenin activated adult mouse epidermis (Collins et al., 2011). We reanalysed these

data to estimate the relative proportion of cells in each of the cell states identified in

vitro (Figure 3.3). We utilised CIBERSORT, a method for characterising the composi-

tion of tissue expression profiles resulting frommixtures of cells (Newman et al., 2015).

Our reanalysis indicated that epidermal beta-catenin signalling results in a depletion

of cells in State A and increases the abundance of cells in State D (Figure 3.7). This

is consistent with the in vivo observation that intrinsic activation of epidermal beta-

catenin results in proliferation and expansion of the stem cell compartment (Lo Celso

et al., 2004).

Next to investigate whether epidermal cell states were altered by NCA Wnt sig-

nalling we examined the treated sample, wild type keratinocytes co-cultured with
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Figure 3.9: Activation of canonicalWnt target genes.
Seven canonical Wnt target genes in K14ΔNβ-cateninER cells upon induction with 4OHT quantified by quanti-
tative reverse transcription polymerase chain reaction (n = 4). *P < 0.05, n.s. not significant. All data shown as
mean ± SD.

K14ΔNβ-cateninER keratinocytes in the presence 4OHT. We confirmed that K14ΔNβ-

cateninER cells intrinsically activated canonical Wnt signalling in response to 4OHT

bydetecting beta-cateninER translocation into the nucleus (Figure 3.8a and b). We also

validated upregulation of canonical downstream target genes such as Bmp4, Cyclin-

D1 and Lef1 in K14ΔNβ-cateninER keratinocytes using qRT-PCR (Figure 3.9).

3.2.3 Reconstruction of NCAWnt induced state transition

Having identified several different states of wild type keratinocytes and validated

the intrinsic effects of beta-catenin activation, we used single-cell RNA-seq to decon-
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volve the effects of NCA Wnt signalling. Single-cell transcriptomes from wild type

keratinocytes co-cultured with 4OHT-activated K14ΔNβ-cateninER cells were com-

pared with those of wild type cells co-cultured with uninduced K14ΔNβ-cateninER

cells and mapped onto the same dimensionally reduced space (Figure 3.10). To ex-

clude the possibility of transcriptional changes resulting from 4OHT treatment alone

we screened bulk differential gene expression between the two cohorts of wild type

cells. We found no evidence of estrogen receptor target genes among differentially

expressed genes (Bourdeau et al., 2004).

We observed the same five distinct transcriptional states in wild type cells with or

without NCAWnt signalling (Figure 3.10), confirmed by independently analysing the

treated cell population to reveal five equivalent subpopulations. However, exposure

to non-cell autonomous Wnt signalling markedly changed the state distribution of

keratinocytes (Fisher’s exact test, p<0.05). Pie charts in Figure 3.10 show the observed

ratio of control and signalling-exposed cells. States A and D significantly deviated

from the expected ratio (binomial test, p<0.05). After exposure to NCA signalling

there was a depletion of cells in the self-renewing, non-proliferative State A and a

higher than expected proportion of cells in State D, representing a transition towards

a proliferative and more differentiated transcriptional state (Figure 3.10).

Taking the states with altered cell proportions and the transition states in between

(States A, B, C and D), we reconstructed the state transition induced by neighbour-

ing Wnt+ keratinocytes using the Monocle pseudotime method (Trapnell et al., 2014).

Wild type and exposed cells were ordered from State A to State D to reconstruct the
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temporal order of gene expression changes for cells undergoing this transition, re-

ferred to as the pseudotransition. Figure 3.11a shows the proportion of control and

Wnt signalling exposed cells along the reconstructed temporal transition from State A

to State D; from this distribution it is clear that NCA Wnt exposed cells bias towards

State D.

We next sought to understand why State A cells were uniquely depleted after

neighbour Wnt signalling. Previous studies have shown that cell responses to ex-

trinsic signalling are affected by intracellular and intercellular transcriptional noise

(Kolodziejczyk et al., 2015b; Guo et al., 2016; Shalek et al., 2014b). We thus hypothe-

sised that the response to NCAWnt signalling involves changes in both the dynamic

range of transcriptional variation (intracellular variation) and state-specific gene ex-

pression (intercellular variation).

3.2.4 NCAWnt signalling reduces heterogeneity inprotein synthesis-

associated transcripts

We first examined whether there was a difference in intracellular transcriptomic het-

erogeneity between the three altered states and whether changes occurred along the

pseudotransition. The resulting ordering of cells from State A to State D was used

to examine the transcriptome coefficient of variation (TCOV) per cell (Figure 3.11b).

Here TCOV is an intracellular measure of the spread of transcript abundance account-

ing for mean abundance. Notably, TCOV decreased over the state transition and was
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Figure 3.11: State A to D cell state transition and transcriptome coefficient of variation.
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significantly higher in State A than States B, C and D (Kolmogorov-Smirnov test; p-

value < 0.05). This reduction in dynamic range of gene expression is consistent with

previous studies that have shown that progenitor cells have a higher rate of stochas-

tic multilineage gene expression which reduces upon cell-fate commitment (Hu et al.,

1997; Velten et al., 2017).

Next we contrasted the heterogeneity of genes that do not change in expression

level between the transition states (Figure 3.12a-c). Figure 3.12c displays the relation-

ship for the log-ratio of intercellular gene expression variation and expression level

between the two extremes of the pseudotransition, States A and D, with the top 10 dif-

ferentially dispersed genes labelled. Of interest are genes which change in expression

heterogeneity from State A to State D while remaining at constant expression levels.

Notably, Baz2a, Sox2, Col7a1 and Calcrl were amongst the genes with reduced COV

in State Awithout significant differential expression (Supplementary Table S2). Baz2a

has been previously established as part of the nucleolar remodelling complex that is

important for establishing epigenetic silencing and transcriptional repression of rRNA

genes (Gu et al., 2015; Santoro et al., 2002). Sox2 is an adult stem cell factor shown to

be expressed in multiple epithelia (Arnold et al., 2011). Sox2 has been previously re-

ported to be expressed in hair follicles but absent from the interfollicular epidermis

(Driskell et al., 2009). Similarly Col7a1 and Calcrl are significantly upregulated in hair

follicle bulge stem cells (Blanpain et al., 2004).

Figure 3.13 shows the expression variability for a selection of statistically signifi-

cant (q < 0.05) differentially heterogeneous genes. We found multiple patterns of in-
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Figure 3.12: Relationship between expression and expression variability.
(a-c) Scatterplots showing the log-ratio of coefficient of variation versus the log-ratio of gene expression be-
tween pairs of pseudotransition states.

tercellular heterogeneity including geneswhich differed in variability across branches

states and genes which were selectively more variable in a single state. Peroxiredoxin-

1 (Prdx1) is one such gene which showed strongly variable expression in State A in

comparison to the remaining states despite no statistically significant difference inme-

dian expression level. Overall, we observed many more heterogeneously expressed

genes in State A (281 genes) than either States B, C or D. The contrast in number of

differentially dispersed genes is demonstrated using the symmetric expression scale

in Figure 3.14a. In comparison, we observed only 19 significantly differentially het-

erogeneous genes with lower heterogeneity in State D. A striking number of these are

known regulators of stem cell identity such as Cdh11, Cav2 and Apc (Kim et al., 2014;

Tan et al., 2013; Chan et al., 1999). They are typically upregulated in basal stem cells;

however little is known about how their heterogeneity affects cell fate. Our analysis of

intercellular variation suggests that in slow-cycling stem cells (State A) with low RNA

and protein metabolism (Blanco et al., 2016), transcriptional heterogeneity is lowest
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for stem-cell marker genes, emphasising the importance of transcriptional noise in

addition to transcriptional amplitude. These observations are consistent with our hy-

pothesis that State A cells are responsive to NCA Wnt signalling due to greater tran-

scriptional variability. Exposure to this coordinated extracellular stimulus reduces

transcriptional heterogeneity for these cells and biases their fate towards State D.

To determine genes essential for a cell to be receptive to neighbour Wnt activation

we analysed the fold-change in heterogeneity between States A and D, comprising

the majority of genes with differential heterogeneity. We found strong enrichment for

translation and ribosome related genes, indicating a role for protein synthesis (p <

1e-6, Figure 3.14b). We hypothesise that cells in State A exhibit a multilineage primed

transcriptional programmewith stochastic expression ofmetabolism associated genes.

Upon fate commitment, cells in the IFE steadily increase their translational rate in a

proliferation independent manner (Blanco et al., 2016). Hence translation associated

genes are subject to greater transcriptional regulation post-commitment independent

of transcription level.

These data and our single-cell analysis identified an NCAWnt-receptive subpop-

ulation, State A, with greater dynamic range in gene expression (TCOV) and greater

variation in the abundance of protein synthesis associated transcripts. Introduction

of the NCAWnt stimulus reduces variability in both aspects.
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Figure 3.14: Protein-synthesis associated genes decrease in heterogeneity from state A to D.
(a) Heatmap with symmetric gene expression scale (z-score normalised log2(TPM + 1)) showing reduction in
gene expression heterogeneity of 281 genes between state A and the remaining transition states. (b) Gene
rank enrichment analysis of log-fold change in gene coefficient of variation (CV) between cells in state D and
the remainder of the cell population. Genes with lower variation in state 5 are enriched for translation and
ribosome-associated gene ontology (GO) annotations (p value < 1e-6)

3.2.5 Transcription factors driving cell fate change

To understand drivers of the observed differential heterogeneity we reconstructed

transcriptional changes over time along the state trajectory. Expression of each gene

was modeled as a nonlinear function of pseudotransition time (Trapnell et al., 2014).

We found 632 genes that were dynamically regulated over the state transition (False

discovery rate < 5%; Figure 3.15). Using hierarchical clustering we grouped these

genes into four patterns of dynamic expression. Group I genes, most highly expressed

in State A, were enriched formethylation associated genes and histonemodifiers such

as Setd3 and Kdm7a. These genes represent a pre-transition transcriptional profile

of State A cells without exposure to signalling beta-catenin induced cells. Group III

genes show highest expression in state C, an intermediate transition state, with enrich-

ment for desmosome genes such as Dsc2, Dsc3, Dsg2 and Dsp, which are most highly
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Figure 3.15: Reconstructing transcriptional changes in transition from state A to D.
Heatmap showing smoothed expression of pseudotransition-dependent genes (n = 632) ordered by hierarchi-
cal clustering and maximum expression. Top two enriched GO terms shown on left (all significant at q < 0.05).
Genes (rows) are ordered by peak expression from state A to state D
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expressed in the suprabasal layers of murine epidermis indicative of early commit-

ment to differentiation (Joost et al., 2016). Group IV genes, predominantly expressed

in State D, were enriched for protein synthesis associated genes and entry intomitosis,

respectively. Notably group III includes the transcription factor Klf5, a regulator of

proliferation in intestinal epithelial cells (Chanchevalap et al., 2004), and E2f1,which

leads to epidermal hyperplasia when overexpressed in mice (Pierce et al., 1998).

To gain insight into the regulation of the dynamically expressed genes induced by

Wnt+ cells we performed a transcription factor motif analysis (Figure 3.16a-c). We

calculated enrichment of transcription factor binding sites from the ChEA database,

removing transcription factors (TFs) whichwere not expressed in any of the seven cell

states (log[TPM+1] > 1). By analysing the promoters of the 632 dynamically expressed

genes we identified 47 transcription factors putatively regulating the state transition.

TFs were separated into three groups according to the directionality of gene expres-

sion from State A to D: positive, negative and neutral. We noted that the activities

of some identified TFs such as Smad3 and Smad4 are only partially dependent on

expression level. Hence we did not rule out TFs on the basis of expression.

From this analysis we predicted Smad3, Smad4, Kdm5b, E2f1 and E2f4 as previ-

ously unknown key regulators of the state transition, with Bcl3 as a likely regulator

of the specific transition between State A and D. Known regulators of keratinocyte

cell fate are shown in blue (Figure 3.16c). Of note are Gata6 and Foxm1, two TFs up-

regulated in State D and previously shown to mark cells with multi-lineage differen-

tiation potential and increased proliferative capacity respectively (Donati et al., 2017;
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Gemenetzidis et al., 2010; Molinuevo et al., 2017). We hypothesised that epidermal

cells could be stratified based on the nuclear abundance of our identified novel state-

regulating TFs, specifically Smad4 and Bcl3. Furthermore, our analysis on State D

gene expressionmarkers and transcriptome correlation indicated that this state shows

a higher proliferation rate relative to states A and B. To investigate further, we calcu-

lated a cell proliferation index consisting of normalised expression of S-phase mark-

ers (Figure 3.17a). This index demonstrated that states C andD comprise proliferative

cells with few cells in States A, B or E actively proliferating.

To confirm our findings, we used an EdU incorporation assay to distinguish pro-

liferating cells and analysed whether keratinocytes positive for our predicted driver

TFs (measured by nuclear intensity) were more likely to be proliferative. At the pop-

ulation level there was no significant difference in proliferation when epidermal cells

were co-cultured with 4OHT induced K14ΔNβ-cateninER cells (Figure 3.17b). How-

ever, when cells were discriminated by nuclear intensity for Bcl3 or Smad4 we ob-

served a significant difference betweenwild type cells exposed toNCAWnt signalling

and wild type or induced K14ΔNβ-cateninER cells alone (Figure 3.17c and 3.17d). On

average 18% of Bcl3+ cells were positive for EdU uptake in wild type or uninduced

K14ΔNβ-cateninER cells; however, when wild type cells were co-cultured with in-

duced K14ΔNβ-cateninER cells the EdU+ fraction rose to 34%. The proportion of pro-

liferative Smad4+ cells increased from 10-18% to 33% EdU+.

Taken together these novel results indicate that Bcl3 and Smad4 are specific mark-

ers of the epidermal state transition and mark cells moving along the trajectory be-
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Figure 3.17: State D is more proliferative and Smad4+/Bcl3+.
(a) Normalised proliferation index projected onto the cell state map. Arrow denotes the direction of pseudo-
transition. (b–d) Quantification of population proliferation by EdU assay in WT, K14ΔNβ-cateninER and co-
cultured keratinocytes with and without 4OHT treatment (b). After stratification by Bcl3 nuclear abundance,
cells in co-culture with activated K14ΔNβ-cateninER cells show a relative higher proliferation rate (c). Simi-
larly, stratification by nuclear Smad4 shows higher proliferation in the treated co-culture condition (h) (n = 3
independent cultures). *P < 0.05. All data shown as mean ± SD

tween State A and State D (Figure 3.10) during the first 24 hours of exposure to a

NCAWnt signal.

3.2.6 NCAWnt induced state transition is contact dependent

From our total population of 129 cells exposed to NCA Wnt signalling, cells in State

E appeared to be unaffected. Our data suggest that State A comprises cells in a ”re-

sponder” state permissive to NCAWnt signalling due to the presence of key TFs and

a more stochastic gene expression programme. We sought to address whether the

reduction in ribosome-related gene expression heterogeneity and the induced expres-

sion of transition TFs are contact or distance dependent. To answer this question we

labelled co-cultures of wild type and K14ΔNβ-cateninER cells with a cell reporter of

protein synthesis (See methods and Figure 3.21).

Wemeasured global protein translation by assaying incorporation of O-propargyl-
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puromycin assay (OPP) and comparedwild type cells in contactwith inducedK14ΔNβ-

cateninER cells to untreated control cells (Figure 3.18a). We observed that wild type

cells showed higher translational activity when in contact with a Wnt+ cell. To con-

firm thiswe analysed the neighbours of over 10,000Wnt+ cells and compared theOPP

fluorescence intensity distributions (Figure 3.18b). We found a small but statistically

significant increase in translation rate for both Wnt+ cells and neighbour cells in the

4OHT treated condition. This suggested a contact-dependent mechanism for control

of protein synthesis downstream of NCAWnt signalling.

To confirm contact dependence and to rule out local diffusion of soluble factors we

repeated the assay in low calcium conditions. Keratinocytes cultured in low calcium

medium do not form adherens or desmosomal cell contacts (Hennings and Holbrook,

1983; O’Keefe et al., 1987). Strikingly we observed no NCA Wnt effect under these

conditions (Figure 3.18b, right). Similarly we observed no increase in nuclear abun-

dance of Smad4, our predicted TF downstream of NCAWnt signalling, in Wnt+ cells,

as predicted. However, in neighbouring cells there was a significant increase in nu-

clear Smad4 intensity, which is abrogated in low calcium conditions (Figure 3.19a and

3.19b).

Taken together these data suggest that the Smad4-mediated cell state transition

is downstream of non-cell autonomous Wnt signalling. Furthermore, the induction

of this transition is contact dependent and does not occur under conditions where

desmosomal adherens junctions are inhibited.
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91



3.3 Conclusions

Heterogeneity in the self-renewal and proliferative capabilities of keratinocytes has

long been recognised. Previous analysis of clones and subclones of cultured human

epidermal cells has demonstrated that there are at least three subpopulations, ‘holo-

clones’, ‘meroclones’ and ‘paraclones’ with descending self-renewal potential (Jones

andWatt, 1993; Barrandon and Green, 1987). More recently, Roshan et al. have shown

the existence of two in vitro states with differing proliferation rates and single cell

transcriptomics have identified two distinct subpopulations of human keratinocytes

in culture (Roshan et al., 2016). In this study, we have dissected molecular hetero-

geneity of epidermal cells at greater resolution and extended previous research by

exploring the response of keratinocytes to neighbouring cells in which beta-catenin

is activated. We have identified five distinct transcriptomic states and characterised

their biological relevance in order to create a state map of keratinocytes in vitro.

Using the cell state map and inducible activation, we have shown that Wnt/beta-

catenin signalling acts to perturb cell fate by co-opting neighbours to become biased

towards a pre-existing proliferative fate (Figure 3.20). It is important to note that we

foundno evidence for a de novo cell state as a result of non-cell autonomous signalling.

This highlights the relevance of transientWnt/beta-catenin signalling to cell state and

is consistent with a model of stochastic epidermal commitment where extrinsic cues

alter the likelihood of a cell switching state (Rompolas et al., 2016). The observed

difference in transcriptome variability between states A and D reflects a difference in
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cell state stability. Only a modest increase in translational activity is observed in state

D or neighbouring cells; however, there is a marked reduction in the variability of

translation-associated genes, highlighting the importance of transcriptional noise as

well as transcriptional volume for determination of cell state.

Combined transcriptomic and positional single cell analyses allowed us to resolve

spatial and temporal effects. As a result of this, we identified a collection of TFs, many

of which were not previously implicated in epidermal cell state. One example is Bcl3,

which is expressed in murine and human basal IFE; however, its role in epidermal

cell fate is poorly understood (Joost et al., 2016; Uhlén et al., 2015). In addition, we

identified Smad4 and utilised this as a marker of cell state transition. Smad4-beta-

catenin cross-talk has been previously identified as essential for hair follicle mainte-

nance (Owens et al., 2008; Qiao et al., 2006; Yang et al., 2009). Here, we show that

beta-catenin signalling activation leads to Smad4 activation in a non-cell autonomous

manner.

Our study does not address the extracellular effectors of NCAWnt signalling. We

previously identified a diverse array of secreted signalling molecules downstream of

canonical Wnt signalling, including Bmp6, Dkk3, Wnt ligands, cytokines and ECM

components (Donati et al., 2014). Our analysis of TF effectors andprevious evidence of

epidermal self-renewal via autocrine Wnt signalling suggests that cells neighbouring

a beta-catenin+ cell are simultaneously committed to a state of lesser self-renewal and

greater proliferative abilities. This is achieved via a combination of Bmp signalling (ef-

fected through Smad3/4; Figure 3.20) and neighbouringWnt inhibition (Dkk3, Lim et
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signalling acts as a non-cell autonomous signalling cue to activate a handful of TFs including Smad3/4, E2f1/4
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al.). Intriguingly these effects are contact-dependent, hinting at yet-unknown mecha-

nisms of locally restricting these signalling molecules or major signalling contribu-

tions from other membrane-bound factors. The observed difference in translation

rate and proliferation in neighbouring cells demonstrates asymmetric coupling of cell

fates, an essential component of epidermal homeostasis to ensure a balance of cell

fates and epidermal metabolism.

In conclusion, our data provide a framework for studying cell state in the interfol-

licular epidermis and extend our understanding of functional heterogeneity andNCA

signalling. Using this knowledge, we demonstrate howWnt/beta-catenin signalling,

an orchestrator of regeneration, homeostasis and tumorigenesis in multiple tissues,

influences neighbouring cell fate.

3.4 Methods

3.4.1 Cell biology

Cell isolation and culture

K14ΔNβ-cateninER transgenicmicewere generated as previously described (LoCelso

et al., 2004). Keratinocytes were isolated and cultured from adult dorsal skin in FAD

medium (onepartHam’s F12, three partsDulbecco’smodifiedEagle’smedium, 1.8×10-4

M adenine), supplemented with 10% foetal calf serum (FCS) and a cocktail of 0.5
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μg/ml hydrocortisone, 5 μg/ml insulin, 1×10-10 M cholera enterotoxin and 10 ng/ml

epidermal growth factor (HICE cocktail) (Watt et al., 2006). For the co-culture scRNA-

seq experiment, wild type and K14ΔNβ-cateninER keratinocytes were cultured on 12

well plates in a ratio of 9:1 for a total of 200,000 cells per well and allowed to attach for

24 hours. Subsequently, cells were treated with 4-OHT (200nM) or DMSO as a con-

trol. After 24 hours of treatment cells were trypsinised and resuspended as a single

cell suspension.

3.4.2 Immunofluorescence, imaging and neighbour cell quantifica-

tion

Immunofluorescence staining

The following antibodies were used: β-catenin (1:250, Sigma), Smad4 (1:250, Sigma),

Bcl3 (1:250, Sigma). For EdU experiments (Molecular Probes; C10337), half of the cell

culture medium was replaced with medium containing EdU for a final concentration

of 10 µM EdU 30 minutes before fixation. Similarly, for OPP experiments (Molecu-

lar Probes; C10456) half of the cell culture medium was replaced 30 minutes before

fixation with medium containing OPP for a final concentration of 20 µM OPP. Cul-

tured cells were fixed with 4% PFA for 10 minutes followed by permeabilisation with

0.1% Triton X-100 for 10 minutes at room temperature. Cells were blocked for 1 hour

at room temperature with 1% BSA in PBS. Primary antibody incubation was carried

out for 90 minutes at room temperature. Samples were labelled with Alexa Fluor (488,
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Figure 3.21: High-content single cell neighbour analysis overview.
Overview of method to analyse neighbouring cells using the Operetta high-content screening platform. Two
cell types are co-cultured, here (90%) WT and (10%) Wnt+ cells, each labelled with a fluorescent dye. A fluores-
cent assay is performed e.g. immunofluorescence for protein abundance or OPP assay for protein synthesis.
Co-cultures are screened for ”rosettes” where a Wnt+ is surrounded by WT cells. Tens of thousands of rosettes
are collated and distribution of assay fluorescence is compared in Wnt+ and neighbour cells.

555, 647)- conjugated secondary antibodies for 1 hour at room temperature. Cellswere

imagedwithin 24 hours using anOperetta or Operetta CLSHigh-content Imaging Sys-

tem (PerkinElmer). Single cell cytoplasmic and nuclear fluorescence intensities were

quantified with Harmony software (PerkinElmer) and analysed in R.

97



Neighbour cell quantification (see Figure 3.21)

For neighbouring cell quantification K14ΔNβ-cateninER cells were labeled with Cell-

Tracker Green CMFDA dye (Molecular Probes) according to the manufacturer’s in-

structions. Single cell fluorescence intensity data and positional information were

analysed in R. For each K14ΔNβ-cateninER CellTracker+ cell the mean fluorescence

intensity of neighbouring cellswas calculated. Neighbouring cellswere defined as the

nearest cell within 20µm (nucleus-to-nucleus distance). The mean number of neigh-

bours was 5.4, as expected from a hexagonal packing model below confluence with

mean cell diameter of 8µm. K14ΔNβ-cateninER cells were excluded if more than two

neighbouring cells were also CellTracker+ (See Figure 3.21). We collected over 10,000

hexagonally packed ”rosettes” of Wnt activated (Wnt+) and wild type cells per condi-

tion. Fluorescence intensity distributions frombiological and technical replicateswere

pooled and contrasted between conditions using the non-parametric Kolmogorov-

Smirnov test.

3.4.3 Bulk gene expression analysis

Bulk RNA extraction and real-time qPCR

Total RNA was purified with the RNeasy mini kit (Qiagen) with on-column DNaseI

digestion, according to themanufacturer’s instructions. RNAwas reverse transcribed

with SuperScript III (Invitrogen). PCR reactions were performed with TaqMan Fast
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Universal PCR Master Mix and Taqman probes purchased from Invitrogen.

Processing of reads and quality control

Reads were preprocessed using FastQC and Cutadapt (Martin, 2011). Sequences were

aligned to the Mus Musculus genome (GRCm38) using Tophat (Kim et al., 2013) dis-

cardingmultiply-mapped reads. Gene level countswere extractedusing featureCounts

(Liao et al., 2014). Transcript levels were quantified as transcripts per million (TPM).

Genes with a TPM greater than 1 were considered as expressed. We filtered cells for

analyses on the basis of number of aligned reads (> 200,000), percentage of ribosomal

reads (< 2%) and number of genes expressed (> 2000). 254 cells were taken forward

for analysis.

3.4.4 Single cell transcriptomics

Single cell capture, library preparation and RNA-sequencing

Single keratinocytes were captured on a medium-sized (10-17μm) microfluidic chip

(C1, Fluidigm). Cells were assessed for viability (LIVE/DEAD assay, Life Technolo-

gies) andC1 capture siteswere imaged by phase contrast to determine empty anddou-

blet capture sites. Cells were loaded onto the chip at a concentration of 300 cells μL-1.

Doublet or non-viable cells were excluded from later analysis. Cell lysis, reverse tran-

scription, and cDNA amplification were performed on the C1 Single-Cell Auto Prep
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IFC, as per the manufacturer’s instructions. For cDNA synthesis the SMART-Seq v4

Ultra Low Input RNA Kit (Clontech) was used. Single cell Illumina NGS libraries

were constructed with Nextera XT DNA Sample Prep kit (Illumina). Sequencing was

performed on Illumina HiSeq4000 (Illumina) using 100bp paired-end reads.

Identification of K14ΔNβ-cateninER cells

K14ΔNβ-cateninER cells were identified by aligning RNA-seq reads to the transgene

locus using bowtie2 (Langmead and Salzberg, 2012). Subsequently, cell identity was

confirmed using qRT-PCR with Fast SYBR Green Master Mix (ThermoFisher Scien-

tific) using the primersATGCTGCTGGCTGGCTATGGTCAG (forward) andATAGAT-

CATGGGCGGTTCAGC (reverse) spanning the beta-catenin estrogen-receptor junc-

tion.

Dimensionality reduction, cell state map and pseudotransition

We performed dimensionality reduction and constructed the principal graph repre-

senting transitions between all possible cell states using DDRTree from Monocle2

(Trapnell et al., 2014). All DDRTree dimensionality reduction was performed using

default parameters and a final dimensionality of two. We initially performed this

analysis on wild type cells to determine the unperturbed cell state map. Subsequently

we applied the DDRTree algorithm on the Wnt+ cell exposed group to confirm that

we independently achieve a similar cell state map. We used all 254 cells for the final
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transcriptomic state map and differential expression to obtain cell state marker genes.

Cell clusters obtained from Monocle were confirmed by a combination of dimension-

ality reduction of the cells using t-distributed stochastic neighbour embedding (tSNE)

(van der Maaten and Hinton, 2008b) and cluster identification with DBSCAN (Ester

et al., 1996). Differential gene expression analysis was performed using Monocle 2

and VGAM using a likelihood ratio test controlling for batch effects and number of

aligned reads per cell. Genes were filtered for log-2-fold change > 0.5 and an adjusted

p-value < 0.05. Expression profiles from this study were correlated with expression

profiles from Joost et al. (single cell RNA-seq, GSE67602), Zhang et al. (bulk microar-

ray, GSE16516) and Lien et al. (bulk microarray, GSE31028) using pearson correlation

coefficient of all genes expressed greater than TPM>1 in more than 5 cells.

Heterogeneity analysis

Differential gene dispersion was performed using the Kolmogorov-Smirnov test after

subtracting group mean expression from each group. Differentially dispersed genes

were defined as q-value < 0.05. We filtered for geneswith a coefficient of variation (CV)

fold change > 2 between the state in question and the remainder of the population.

Enrichment of gene log-fold change in heterogeneity was performed using a mean-

rank gene set enrichment test on GO Biological Process terms as described previously

(Michaud et al., 2008).
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Pseudotransition gene expression and transcription factor enrichment

Pseudotransition cell ordering was determined by applying the Monocle pseudotime

algorithm to the states with significantly different proportions of control and Wnt+

exposed cells (states A, B, C and D). Gene ontology enrichment was performed on the

resulting clusters of temporal gene expression using enrichR (Kuleshov et al., 2016).

Transcription factor enrichment was performed by quantifying overrepresentation of

target genes in the set of temporally regulated genes using the ChEAChIP-X transcrip-

tion factor binding database (Lachmann et al., 2010).
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Chapter 4

Generative adversarial neural networks

for analysis of scRNA-seq data

4.1 Introduction

The development of affordable single cell RNA-seq has enabled the measurement

of transcript abundance in hundreds to thousands of individual cells (Hashimshony

et al., 2012; Tang et al., 2009; Zilionis et al., 2017). These profiles provide an opportu-

nity to define cell state and indirectly measure the signals and factors influencing cell

fate. However, despite the richness of single cell measurements, these data are compu-

tationally challenging to analyse due to technical and biological noise meaning that

traditional bulk expression analysis approaches are frequently not applicable. Cur-

rent single cell RNA-seq dimensionality reduction methods can successfully reveal
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clustering and structure within data when technical noise is low; however, they can-

not easily integrate diverse datasets produced using distinct protocols (Pierson and

Yau, 2015; Wang et al., 2017; Lin et al., 2017). Furthermore, current approaches focus

on differential expression and marker gene identification but do not yield functional

gene regulatory relationships.

Deep learning algorithms enabled by advances in computational power havedemon-

strated the capability to analyse diverse datasets from images to genomics (Esteva

et al., 2017; Angermueller et al., 2017b). In particular, generative adversarial networks

(GAN), first introduced in 2014, have shown promise in the field of computer vision

(Goodfellow et al., 2014b). Since their introduction, GANs have become an active area

of research with multiple variants developed that have resulted in improved perfor-

mance and training (Radford et al., 2015; Chen et al., 2016; Miyato et al., 2017; Ar-

jovsky et al., 2017; Gulrajani et al., 2017). Common to all of these variants (Creswell

et al., 2017) is the concurrent training of two neural networks competing against one

another, referred to as the generator and discriminator (Figure 4.1). The generator is

tasked with generating simulated data, whereas the discriminator is tasked with eval-

uating whether data is authentic or not. Notably, only the discriminator directly ob-

serves real data while the generator improves its simulations through interactionwith

the discriminator. As training progresses both neural networks learn key features of

the training data. Additionally, both discriminator and generator performance im-

proves as they compete against each other.

In the field of computer vision, GANs have proved capable of generating visually
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convincing and novel images such as faces or furniture (Karras et al., 2017b; Zamyatin

and Filchenkov, 2017). Furthermore, it has been shown that the generator network

learns a meaningful latent space where visually similar data such as similar faces are

clustered. Ameaningful latent space for single cell RNA-seq is particularly appealing

as this can be used in conjunction with existing dimensionality reduction methods for

improved and more meaningful subpopulation extraction. Additionally, an advanta-

geous feature of generative neural networks is that non-linear relationships between

features of the data are learned through training and can be later extracted to provide

further insights.

Here, we integrate disparate epidermal datasets produced by three separate lab-

oratories. The mammalian epidermis comprises interfollicular epidermis (IFE), hair

follicles, sebaceous glands and further associated adnexal structures: together they

form a protective interface between the body and external environment. Hence, epi-

dermal cell fate is determined through the integration of extracellular cues with tran-

scriptional activity (Watt and Hogan, 2000; Hsu et al., 2014). Under steady-state con-

ditions, each epidermal compartment is maintained by distinct stem cell populations.

However, under certain conditions such as wounding, each stem cell subpopulation

is able to contribute to all differentiated lineages (Page et al., 2013). These distinct yet

seemingly interchangeable subpopulations hint at a common, but as yet undefined

epidermal gene regulatory network. For the first time, we have applied GANs to

genomic data to uncover previously unknown gene regulatory relationships and reg-

ulators of epidermal cell state. We show that GANs produce biologically meaningful
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dimensionality reduction and using the trained generator neural network we demon-

strate that GANs can be used to predict the effect of cell state perturbations on unseen

single cells.

4.2 Results

4.2.1 Generative adversarial networks integrate diverse datasets

We applied a generative adversarial network (GAN) to integrate multiple diverse

mouse epidermal single cell RNA-seq datasets. These datasets originated from three

labs, spanning mouse epidermal cells in vitro (Ghahramani et al., 2018), whole epider-

mis in vivo (Joost et al., 2016) and isolated subpopulations in vivo (Yang et al., 2017) (Fig-

ure 4.1, upper right. See methods and materials for GEO accession numbers). Each

dataset has different characteristic technical and biological variation. No adjustments

were made to account for batch-to-batch variations within datasets and across labs.

After removing non-epidermal cell types and outlier cells we retained 1763 cells for

training and 500 unseen cells for testing and validation. Similarly to other analysis

methods applied to scRNA-seq, we filtered genes by expression level, resulting in

6605 potentially informative genes (see methods).

GANs consist of two neural networks competing against each other. The genera-

tor is taskedwith producing realistic output data from a random input vector z named

the input latent variable. In our case the latent variable z is of lower dimension (100
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Figure 4.1: Overview of generative adversarial networks applied to scRNA-seq.
Generative adversarial networks consist of two neural networks concurrently training whilst competing
against one another. These networks referred to as the generator and discriminator networks each have a dis-
tinct task. The generator is tasked with generating data by transforming a 100-dimensional latent variable into
a single cell gene expression profile. In turn the discriminator is tasked with evaluating whether data is authen-
tic or generated. Only the discriminator network sees the real single cell RNA-seq data, which have not been
corrected for batch effects or technical variation. Once trained, we are able to extract biologically meaningful
information from the generator and discriminator networks such as gene association networks, predict single
cell time-courses, important gene expression ranges and biologically meaningful dimensionality reduction. Fully
connected neurons, FCN.
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dimensions) than the output scRNA-seq data (6605 genes), hence the generator rep-

resents a mapping from a lower dimensional space to gene expression space. During

development of the GAN we varied the dimensionality of the input latent variable

and finalised on a 100-dimensional vector, arbitrarily chosen as this is much lower

than the desired output dimensionality (6605 genes) and we could not achieve sta-

ble training with latent space dimensionality an order of magnitude lower (10). Each

100-dimensional latent vectormaps to 6605 transcripts permillion (TPM, log(TPM+1))

normalised gene expression values for one cell. The second neural network, named

the discriminator, is tasked with discriminating between the real and generated data.

The discriminator takes log(TPM+1) gene expression values as input and outputs a

score related to its assessment of the gene expression input. These two networks are

trained using a combined loss function leading to improved performance of both neu-

ral networks (Figure 4.1).

We tested several variations of GANs ultimately utilising an Improved Wasser-

stein GAN with added gradient penalty term in the loss function as described previ-

ously (Gulrajani et al., 2017) due to training stability. Other variations tested include a

Spectral Normalisation GAN (Miyato et al., 2017) and Loss-Sensitive GAN (Qi, 2017).

We trained our generative neural network for approximately 15,000 epochs per full

training run. We evaluated the generator network output performance at multiple

checkpoints using t-distributed stochastic neighbour embedding (t-SNE, Figure 4.2)

and correlation between real samples and generated samples as shown in Figure 4.3a

and b. The t-SNE dimensionality reduction visually demonstrates the number of clus-

108



ters within real and generated cell populations. At each evaluation we generated 500

cells using 500 random latent variables and compared these to cells used for neural

network training and cellswitheld from training to be used as validation cells. Early in

training, the GAN struggles to produce a varied output representative of the breadth

of cell types and states; generated cells are closely correlated and form a single cluster

in the t-SNE plot (Figure 4.2 1000 steps, Figure 4.3a). After 5,000 steps the generator

begins to produce a varied output with generated cells mapping to multiple clusters

in the t-SNE plot covering the different cell types, cell states, cell origin and exper-

imental batches present in our combined dataset. After 10,000 steps, the generator

network is capable of producing a subset of cells with similar transcriptomic profiles

to those of Yang and colleagues that form a distinct cluster. Further GAN training

broadens the distribution of correlations between generated samples, indicating an

increasingly diverse generator output (Figure 4.3a).

We observed that after 13,000 steps continued training does not continue to in-

crease the output diversity of the generator network, as defined by the median dis-

tance between cell gene expression profiles. Figure 4.4 shows that GAN output di-

versity reaches a maximum between 12,500 and 15,000 training steps. Furthermore,

additional training between 12,500 and 15,000 steps does not change the generated

cell correlation distribution (Figure 4.3a). At this point the discriminator loss function

has also converged and therefore we cease further training (Figure 4.5).

We computationally validate our GAN by examining the correlation between gen-

erated samples and unseen samples (Figure 4.3). The distributions obtained at differ-
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Figure 4.2: Generated cells at four training steps.
t-SNE projection of 1763 real training cells, 500 real withheld cells and 500 generated single cell expression
data: each data point represents a cell and cells with similar expression profiles are positioned close together.
Generated cells are clustered at the beginning, but with training gradually occupy the entire range of expres-
sion outputs for different cell types across three studies. Cells are visualised at 1000, 5000, 10,000 and 13,000
training steps.
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Figure 4.3: GAN training improves expression output diversity.
(a) Distribution of pairwise correlation between pairs of real or generated cells after 1000, 5000, 10,000 and
15,000 training steps. (b) Distribution of pairwise correlation between pairs of real and generated cells after
1000, 5000, 10,000 and 15,000 training steps.
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Figure 4.4: GAN output diversity over training time.
Relationship between GAN training epochs and output diversity as measured by median cellcell distance. Blue
line is a LOESS regression. The greatest diversity of gene expression is achieved between 13,000 and 15,000
steps.
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Figure 4.5: Generator and discriminator network loss curves.
Pink line shows discriminator network loss curve, black line shows generator network loss curve. Loss values
for both neural networks converge to zero, indicating increasing performance for the networks over training.
However, unlike most neural networks, convergence of loss for GANs is necessary but not sufficient to indicate
that training is complete. Hence, we use loss in addition to other metrics set out in this section.
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ent training steps show that generated samples are correlated with, but distinct from,

real samples. At early training steps this distribution is centred around a Pearson cor-

relation of 0.4. After 10,000 steps this distribution broadens, indicating the generator

learns to simulate a diverse population of cells. This can also be seen from the expres-

sion of individual genes. Figure 4.6 shows single cell expression bar plots for three

genes that distinguish subpopulations in our cell cohort, Ap1s3, Bcl2 andNucks1. For

each gene we show 500 unseen cells and 500 closely related generated cells with an

average correlation of 0.71. Our generated cohort follows a similar pattern of expres-

sion to the real unseen cells, with Ap1s3 and Bcl2 highly expressed in differentiating

cell types, and Nucks1 expression absent in vitro. In real cells where Ap1s3 or Bcl2

are not detected, the corresponding generated cells show low non-zero expression

indicative of a form of imputation performed by the generator. Across all genes, ex-

pression variability in the simulated cells is similar to the real data. Together these

results demonstrate that the generator network is not memorising and reproducing

training samples but is instead inferring relationships between gene expression values

in order to output convincing heterogeneous generated cells.

Focusing on the data from Joost and colleagues, the 1422 cells comprise eleven

epidermal cell types originating from whole dorsal epidermis including previously

uncharacterised cells. The generator neural network is able to simulate cells clustering

with all in vivo epidermal cell types, ranging from sebaceous gland cells with distinct

gene expression profiles to upper hair follicle and interfollicular epidermal cells (IFE)

with similar transcriptomes but distinct spatial positions (Figure 4.7). This range of
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Figure 4.6: Generated and real expression values for three genes.
Bar plots showing expression of Ap1s3, Bcl2 and Nucks1 in 500 unseen real cells and 500 closely related gener-
ated cells. Cells are ordered by hierarchical clustering of the unseen real cells using all 6605 genes.
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Figure 4.7: Generating cells from the Joost et al. dataset.
t-SNE projection of subset of real cells from Joost et al. and corresponding generated cells. Despite training
with a larger and diverse dataset, the GAN captures cell diversity at a detailed level described by Joost. Labels
show the corresponding cell type for each cluster. Upper hair follicle, uHF. Junctional zone, JZ.

cell type simulation is achieved despite training the GANusing three diverse datasets.

4.2.2 GAN training on non-epidermal datasets

We next sought to apply the GAN algorithm to non-epidermal datasets to ascertain

whether the method can generalise to a more diverse range of cell types. We focused

on the generative capabilities of theGANand assessedwhether it was equally capable

of generating cells from non-epidermal datasets. We selected three datasets on the

basis of their diversity.
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Firstly, we applied the GAN to a timecourse of motor neuron differentiation (Sag-

ner et al., 2018). Briefly, Sagner and colleagues started from human embryonic stem

cells (ESCs) and over seven days directed their differentiation towardsmotor neurons

using a combination of signalling factors including Wnt and FGF. For this dataset we

trained the GAN using 2342 cells and 14,000 genes, substantially more than for the

epidermal datasets owing to the more diverse range of cell types present from ESC

to motor neuron. Figure 4.8a shows a t-SNE projection of real and generated cells

resulting from training the GAN on this motor neuron dataset. The GAN is able to

generate cells from all cell type clusters present in the real dataset and produces a

similar number of outlier cells to the real scRNA-seq.

Subsequently, we applied the GAN to two droplet-sequencing based single cell

datasets. We first analysed data from Greenleaf and colleagues alone, training the

GAN on 7,400 cells which passed QC filtering (Buenrostro et al., 2018). This dataset

covers the full spectrum of human hematopoietic differentiation comprising a mini-

mumof 10 phenotypically distinct cell types sequencedusing the 10xGenomicsChromium

system. A key feature of the Chromium system is the high-throughput of sequenced

cells, typically in the tens of thousands. Furthermore, sequenced libraries are of lower

depth than FACS or Fluidigm C1 based methods with typically 50-100,000 aligned

reads per cell in contrast to up to 1 million for the Fluidigm C1 epidermal data from

Joost et al. (2016). As before, the fully trained generator neural network is able to

generate cells clustering with the full spectrum of gene expression profiles as demon-

strated in Figure 4.8b. We next retrained on the combined dataset of Buenrostro et al.
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Figure 4.8: Applying GAN to non-epidermal datasets.
(a-c) t-SNE projection of a subset of real and generated cells from (a) Sagner et al. (2018) profiling motor neuron
differentiation, (b and c) Buenrostro et al. (2018); Zheng et al. (2017) profiling hematopoietic differentiation
using high-throughput droplet-sequencing based methods. For each dataset we visualised 500 real and 300
generated cells.

(2018) and Zheng et al. (2017) to understand whether the trained generator network

could successfully simulate gene expression profiles from two large (> 100,000 cells)

datasets. Figure 4.8c shows the t-SNE projection after GAN training on the combined

dataset. Here again, one trained generator network demonstrates the ability to simu-

late cells clustering with two datasets and two distinct sets of technical and biological

variation.

4.2.3 Dimensionality reduction by combining the discriminator net-

work with t-SNE

Focusing again on the three integrated epidermal datasets, we hypothesised that after

completion of GAN training the discriminator network learned biologically relevant

features of scRNA-seq data, discarding uninformative genes in order to discriminate

successfully between the generated and real samples. The discriminator neural net-

work consists of a single hidden layer whose output is transformed to a discriminator
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or ”critic” output value. Therefore the discriminator transforms 6605 gene expres-

sion values into 200 learned internal features, effectively a reduced dimensional rep-

resentation. We sought to understand whether the discriminator hidden layer out-

put contained learned features that could be used for dimensionality reduction. We

performed t-SNE on the discriminator hidden layer output to visualise these learned

features (Figure 4.9) and compared this with two other approaches; PCA alone and

t-SNE alongside PCA-based batch effect removal.

First we performed a principal component analysis (PCA) on the combined epider-

mal training data (Figure 4.9a, middle column); the main source of linearly separable

variance in the first two components is the batch effect of dataset origin and laboratory

and the approach generally fails to identify biologically meaningful clusters even at

higher principal components. We removed this technical source of variation by sub-

tracting the first two principal components and performing a t-SNE on the resulting

dataset. The resulting t-SNE (Figure 4.9a, right column) no longer clusters cells by

dataset origin, so removing variation caused by different experimental protocols, at

the cost of concurrently removing informative biological variation in gene expression.

Two major sources of variation in epidermal cells are their differentiation status

and spatial positionwithin the epidermis: a useful dimensionality reduction approach

should capture at least one of these features, ideally both. To investigate this we over-

laid expression of Krt14, amarker of undifferentiated keratinocytes, Krt10 amarker of

commitment to differentiation and Rps29, a ubiquitously expressed ribosomal protein

upregulated in the IFE in comparison to hair follicles.
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Figure 4.9: GANt-SNE clusters biologically similar cells.
(a) GANt-SNE visualises 2263 real cells by performing t-SNE on 200 features captured by the discriminator
neural network’s hidden layer. This is compared with principal component analysis (PCA) and t-SNE after
removal of linear batch effects using PCA (PC removal + t-SNE). PCA is heavily affected by batch effect and
clusters the three datasets separately. (b) Keratin-14 expression overlaid onto projections. Krt-14 is a marker
for basal interfollicular epidermis (IFE). GANt-SNE distinguishes between basal IFE and non-basal IFE cells,
whereas PCA and PC removal + t-SNE fail to distinguish between these cell types. (c) Keratin-10 is a marker
for differentiation interfollicular epidermis (IFE). . GANt-SNE successfully clusters separates supra-basal and
terminally differentiated IFEs. (d) Ribosomal Protein S29 is known to be expressed highly in interfollicular epi-
dermis (IFE) and at medium levels in hair follicles (HF). GAN-tSNE successfully distinguishes between these two
major cell types.
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Biologically, we expect cells with similar expression levels of these marker genes

to cluster. PCA and the combined approach of PC removal + t-SNE perform poorly

in this regard and expression of all three markers fails to distinguish cells across the

dimensionally reduced space (Figure 4.9 middle and right column). In contrast, our

GANt-SNE approach clusters Krt14high cells deriving from the basal layer of the IFE

(Figure 4.9b, Basal IFE) which are separated from the remaining IFE cells. A third clus-

ter of hair follicle cells shows sporadic expression of Krt14 as this is not a functional

marker for these cells. Our dimensionality reduction separates differentiated IFE cells

highly expressing Krt10 from terminally differentiated and keratinized Krt10low cells

(Figure 4.9c). Furthermore, GANt-SNE correctly separates IFE-derived cells from hair

follicle cells as seen by Rps29 expression (Figure 4.9d). These biological distinctions

are not identified by the two alternative methods of dimensionality reduction.

These results lend credence to our hypothesis that the discriminator learns biolog-

ically relevant features of the data. Using the GANt-SNE approach we successfully

separate cells by differentiation status and spatial position (IFE vs. hair follicle and

differentiating vs. undifferentiated). This is achieved without a priori knowledge of

technical variation and batch effects by training on the commonalities between train-

ing data. In contrast the PCA and t-SNE approaches fail to separate cells into these

biologically meaningful clusters, as they crudely extract the strongest sources of vari-

ation - often a non-linear mixture of biological and technical variation.
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4.2.4 Simulating cellular perturbations using latent space interpola-

tion

To take advantage of the gene expression rules learned by the generator network we

devised an algorithm for retrieving the latent space vector z from an arbitrary gene

expression profile x, such that x = G(z). For each target cell we randomly sampled

latent space vectors (z) and generated cells until a sufficiently similar cell is obtained

(see methods). In other fields where GANs have been applied, such as image gen-

eration, the latent space representation of an image meaningfully represents visually

similar images. Furthermore, vector arithmetic in the latent space leads to meaning-

ful outputs. For example Radford and colleagues (Radford et al., 2015) have shown

that subtracting the latent space vectors of a face wearing glasses from a face without

glasses results in a differential vector representing glasses; adding this to a different

face outputs a face with glasses (i.e.G(z′) produces a person wearing glasses where

z′ = (zglasses − zno glasses) + zface ).

We hypothesised that latent space arithmetic can be extended to cell types and

cell states. To investigate this we simulated the process of differentiation at the sin-

gle cell level using latent space arithmetic, as shown in Figure 4.10. We sampled 30

terminally differentiated and undifferentiated pairs of cells from the unseen pool of

cells in the Joost dataset using the original study labels, obtained their latent space

vectors zdifferentiated and zbasal and calculated the difference between these vectors δ =

zdifferentiated − zbasal . We sampled cells from both the interfollicular epidermis and hair
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Figure 4.10: Simulating cell state transitions using latent space interpolation.
Schematic showing how to simulate differentiation for single cells using latent space interpolation. Expression
data for pairs of undifferentiated and differentiated cells are transformed to their respective latent space vec-
tors (zbasal, zdifferentiated)) The difference between the vectors (�) represents differentiation in latent space (upper
panel). This difference vector is then applied to the latent space vector of another unseen cell in order to pre-
dict the terminally differentiated state (lower panel). We also simulate 1000 differentiation timepoints.
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follicles in order to obtain a universal differentiation latent vector. Unseen cells were

used to demonstrate that the generator’s learned latent space could generalise to pre-

viously unseen gene expression profiles. We then added δ, the latent space differ-

entiation vector, to an unseen undifferentiated cell and interpolated 1000 timepoints

between the undifferentiated latent space point and the simulated differentiation la-

tent space endpoint. We used the generator network to produce gene expression for

all 1000 timepoints and repeated this process for 30 cells with heterogeneous undif-

ferentiated starting profiles. It is important to note that only the starting point (the

undifferentiated cell gene expression profile) is real, whereas the differentiated end-

point and all timepoints in between are generated by the neural network.

Figure 4.11 shows simulated time-series gene expression profiles for a selection of

genes. Two differentiation markers, Periplakin (Ppl) and Grainyhead-like protein 3

homolog (Grhl3), demonstrate the ability of our latent space arithmetic to simulate

successfully simulate differentiation of single cells. Over differentiation time points

themean expression level of these twomarkers increases, spanning the expression lev-

els observed in the undifferentiated and differentiated subpopulations (B - basal start

point, D - differentiated end point median expression line). Similar to real scRNA-seq

gene expression profiles, the generated time points for individual cells display sub-

stantial cell-to-cell variation in gene expression over time, with cells showing different

gene expression curves dependent on initial expression level and cell state. Similarly,

for basal IFE markers such as the examples in Figure 4.11, Integrin-beta 1 (Itgb1) and

Metallothionein 2A (Mt2) the reduction in expression is successfully captured by the
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Figure 4.11: Simulated single cell expression profiles (30 cells) for six genes.
Simulated expression profiles for 6 representative genes in 30 cells over 1000 differentiation timepoints. Red
lines indicate expression profiles in individual cells and lack lines provide the mean expression over all cells.
Dotted lines correspond to the median expression of basal undifferentiated (B) and differentiated (D) cells from
the Joost dataset. Periplakin ( Ppl) and Grainyhead like transcription factor 3 (Grhl3) are known differentia-
tion whose simulations show increasing expression. Integrin beta-1 (Itgb1) and Metallothionein 2 (Mt2) are
basal IFE marker which display gradually decreasing expression Actin beta (Actb) and UDP-Glucuronate Decar-
boxylase 1 (Uxs1) are not traditionally considered to be markers but display non-linear expression profiles with
substantial cell to cell variability

GAN latent space interpolation.

Moreover, the expression curve is not necessarily monotonic or linear. We also ob-

served a range of highly non-linear expression profiles such as genes only expressed

in early or late timepoints (Uxs1), parabola-like expression (Actb, Ube2f) and genes

which change in expression variation but not mean expression. These non-linear ex-

pression profiles demonstrate that latent space interpolation produces meaningful

gene expression predictions based on gene expression interdependencies and does

not simply average between gene expression profiles.

Next, we applied Monocle to the Joost et al. (2016) dataset to contrast our pre-

dicted gene expression profiles with pseudo-ordering derived observations. We ap-
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plied Monocle to IFE cells only in order to capture IFE differentiation dynamics. Fig-

ure 4.12 shows the predicted cell state trajectories when Monocle is applied using

default settings. Using this cell ordering, we reconstructed gene expression dynamics

for Ppl, Grhl3, Itgb1 and Uxs1 as shown in 4.13. For Ppl and Grhl3 we expect increas-

ing expression over differentiation. Monocle’s pseudo-ordering captures this increase,

however, the reconstructed expression dynamics over differentiation are constructed

from themean of ordered cells. Hence, theMonoclemethod does not predict the likely

difference in dynamics from cell to cell.

Focusing on Itgb1, we expect expression of this basal integrin to decrease over dif-

ferentiation. Here, pseudo-ordering hasmis-ordered cells early andmid-differentiation,

hence failing to capture that cells earliest in differentiation highly express Itgb1. This

can be partially rectified by guiding pseudo-ordering using Itgb1 as a marker gene.

Finally, few cells express Uxs1, hence Monocle predicts that Uxs1 is invariant to dif-

ferentiation, as the Uxs1+ cells are averaged out by the majority of Uxs1-. Observing

the pseudo-ordering it is apparent that Uxs1 is only expressed by differentiating cells,

a feature captured by the GAN latent space interpolation.

To investigate further the dynamics of gene expression over epidermal differen-

tiation we clustered the simulated time-series profiles for all 6605 genes. Using k-

means clustering we were able to distinguish eight types of dynamic expression pro-

file (Figure 4.14). Genes expressed early in differentiation were enriched for epider-

mal stem cell related gene ontology and concordantly late-expressed genes were en-

riched for epidermal differentiation (q-value<0.01 for both, Figure 4.15). We focused
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Figure 4.12: Monocle predicted pseudo-order of IFE cells.
Monocle dimensionality reduction with superimposed trajectory of IFE cells from Joost et al. (2016). Cells are
coloured by Monocle-predicted clusters. Labels 1, 2 and 3 indicate Monocle-predicted cell state trajectory
branch points.
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Figure 4.13: LSI simulated expression compared toMonocle.
Simulated expression profiles for 4 representative genes in 30 cells over 1000 differentiation timepoints (as
before in Figure 4.11. (Upper) red lines indicate expression profiles in individual cells and lack lines provide
the mean expression over all cells. Dotted lines correspond to the median expression of basal undifferentiated
(B) and differentiated (D) cells from the Joost dataset. (Lower) blue represents IFE cells as pseudo-ordered by
Monocle and the predicted expression dynamics derived from the pseudo-ordering.

on four clusters, two corresponding to increasing and decreasing expression (Figure

4.14, Groups I and II) and two subsets of genes only transiently up- or down-regulated

during commitment to differentiation (Figure 4.14, Group III and IV genes). To val-

idate these findings we used a recently published dataset investigating human epi-

dermal differentiation (Mishra et al., 2017). Mishra and colleagues utilised methyl-

cellulose suspension-induced differentiation to obtain temporal differentiation gene

expression data from human keratinocytes at 0, 4, 8 and 12 hours. A majority of our

predicted transiently expressed genes are dynamically expressed in this dataset with

Groups I and II showing decreasing and increasing bulk expression over the differenti-

ation time course (Figure 4.16, Group I and II). Focusing on Group IV, these 223 genes

are of particular biological interest as they are predicted to be transiently expressed

during commitment to differentiation and are therefore likely to play a functional role

in this process. From our predicted epidermal commitment genes, this group clusters

into three subgroups based on bulk peak expression around 0 hours, between 4 and

8 hours, and 12 hours or later. We hypothesise that three groups are observed as our
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Figure 4.14: Clustering of simulated expression profiles.
K-means clustering of simulated differentiation expression profiles for 6605 genes. We identify eight broad
types of temporal gene expression, of which four of the dynamic expression patterns are labelled Groups I-IV.

simulated differentiation assumes a synchronised population of differentiating cells.

The asynchronous nature of in vitro differentiation and heterogeneous starting popu-

lation reduces our ability to detect transiently expressed and subsequently downreg-

ulated genes. From the subgroup with peak expression between 4 and 8 hours we

identified two protein phosphatases, PTPN1 and PTPN13 which are also identified

and extensively validated by Mishra and colleagues. This is followed by transient

MAF expression - a member of the AP1 subfamily of differentiation transcription fac-

tors - predicted by our latent space interpolation approach and observed in theMishra

dataset along with previous studies (Lopez-Pajares et al., 2015).

In summary, using our generative model we have simulated a perturbation to

cell state in the form of epidermal differentiation and subsequently obtained high-

resolution predicted gene expression profiles. Using the generator neural network

we have obtained information on switch-like expression of genes, an aspect of gene

expression which is difficult to infer from previous methods of single cell RNA-seq

analysis such as pseudotime ordering. Pseudo-ordering of cells provides an under-
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Figure 4.15: Gene ontology enrichment for predicted differentiation genes.
Gene ontology enrichment for genes that generally decrease (upper) or increase (lower) over differentiation as
predicted by latent space interpolation.
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Figure 4.16: Validation of LSI predictionwith bulk gene expression data.
Heatmaps showing bulk expression levels of genes in Groups I-IV from Mishra et al. at 0, 4, 8 and 12 hours of
suspension-induced differentiation. Most genes display similar expression profiles to the simulations, despite
the differences in experimental set ups.
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Figure 4.17: Sensitivity analysis of discriminator network.
Sensitivity curves for seven known markers for epidermal or determinants of epidermal state: Actin beta (Actb),
Involucrin(Ivl), Keratin 10 (Krt10), Keratin 14 (Krt14), Caveolin 2 (Cav2), Bromodomain-containing protein
4 (Brd4), SRY-Box 9 (Sox9). Some genes such as Ivl an IFE differentiation marker display higher sensitivity at
increased expression levels whereas others display the opposite trend.

standing of the sequence of gene expression events, however, this can be confounded

by highly transient gene expression events which may lead to erroneously missing or

identifying cell state transitions. In comparison, our generative method is guided by

gene expression rules learned by the GAN, hence producing valid gene expression

profiles at all timepoints. These results can be extended to any other perturbation

captured by latent space.

4.2.5 Discriminator network identifies state-determining gene expres-

sion ranges

As GAN training progresses, the discriminator network learns to identify compatible

ranges of gene expression levels and interrelationships for all genes. An advantage
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of our approach is that these relationships can be highly non-linear, for example the

discriminator can learn gene expression interdependencies which only apply when

genes are expressed in a certain range or combination. To extract this learned informa-

tion we performed a sensitivity analysis on the discriminator network by taking real

gene expression profiles from the unseen cell group and varying expression of genes

individually from the lowest observed expression level in the cohort to the maximum

observed expression level. Figure 4.17 shows the relationship between adjusted ex-

pression level and change in discriminator network output critic value. This analysis

produced a sensitivity curve for each gene where absolute sensitivity value indicates

a strong change in discriminator critic value and the gradient of the sensitivity curve

denotes ranges of gene expression that the discriminator is sensitive to. For genes

with no known role in epidermal cell state such as Actb there is little change in sen-

sitivity across all expression levels. In contrast, for known markers or determinators

of epidermal state, such as Ivl, Krt10, Krt14, Cav2, Brd4 and Sox9, there is a strong

relationship between expression level and sensitivity. For some genes such as Ivl, an

IFE differentiation marker, an increase in expression showed increased sensitivity, i.e.

a greater effect on discriminator critic value. However, for other genes such as Krt10

medium levels of transcription resulted in a lower sensitivity than low and high lev-

els indicating that for this gene there are two important ranges of transcription. The

discriminator network identification of Krt10 import expression ranges is supported

by strong expression of Krt10 in the interfollicular epidermis above the basal layer

and subsequent downregulation in terminally differentiating cells (Joost et al., 2016).

Krt10 misexpression has been shown to cause epidermal barrier defects (Müller et al.,
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Figure 4.18: Sensitivity analysis identifies epidermal regulators.
(Upper) histogram of maximum sensitivity curve gradients of 6605 genes, with the top eight genes labelled;
known markers are highlighted in bold. (Lower) Gene Ontology enrichment for the top 100 genes by maximum
sensitivity gradient as scored by -log10(p-value).

2006; Cheng et al., 1992). Furthermore, a cellular need for binary expression of Krt10

is clear as the protein constitutes approximately 40% of all cellular proteins in the

suprabasal layer of the epidermis (Fuchs and Green, 1980; Fuchs et al., 1992).

We sought to compare the relative importance of genes in determining cell tran-

scriptional state across all epidermal cell types. Sensitivity varies non-linearlywith ex-

pression level, hence, to compare all geneswe calculated themaximumgradient of the

sensitivity curve for each gene (Figure 4.18 upper). This metric is an indication there

is at least one range of expression levels which has a large effect on discriminator net-
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work output. Strikingly, the top 100 genes identified are highly enriched for known

epidermal regulators and comprise both low and highly expressed genes (Figure 4.18

lower). Amongst the top 10 are three keratin genes with spatially-restricted expres-

sion; Krt6a (inner bulge), Krt10 (suprabasal IFE) and Krt14 (basal IFE). Our analysis

predicted Lars2 expression as one of the most important indicators of pan-epidermal

cell state. Lars2 is a mitochondrial leucyl-tRNA synthetase and is upregulated during

differentiation as seen by our differentiation predictions and from the Joost dataset

(Joost et al., 2016). Considering these analyses we hypothesise that Lars2 is one of the

key regulators of cell metabolic considerations during differentiation. This sensitiv-

ity analysis approach enables identification of state-regulating genes without bias for

transcript abundance.

4.2.6 GAN-derived gene association networks predict Gata6 targets

Finally we examined the internal features of the generator network to extract gene

expression interdependencies to complement our sensitivity analysis ranking of state-

determining genes by providing context on how these genes are coregulated. The final

layer of the generator network non-linearly transforms an arbitrary number of internal

features to the final 6605 gene expression values using a leaky rectified linear unit

activation function. We found empirically that 600 internal features produced stable

anddiverse generator output, representing amaximumof 600 features that, whennon-

linearly combined, produce each gene expression output value. Since these internal

features are an order of magnitude fewer than the number of gene expression values,

134



the generator network is forced to learn the most salient relationships between genes

in order to produce a convincing output. Hence, genes with correlated generator final

layer values are predicted to correspond to co-regulated genes. This is distinct from

correlation analysis of gene expression, which infers linear and directly correlated

regulation.

We visualised the correlation of the final layerweights for the 600 features between

all genes using a force directed network (Figure 4.19) and also examined the structure

and clustering of the genes using a hierarchically clustered heatmap. On a macro-

scopic scale genes are segregated by their overall positive or negative effect on gene

expression. This can be seen from the polarity of the generator derived gene-gene

network in Figure 4.19

On a local scale the majority of genes cluster into small groups of between 10 and

50 closely associated genes. We used these local gene association networks to exam-

ine Lars2, a gene predicted from our analysis to be highly important for epidermal

cell state. Lars2 is a mitochondrial leucyl-tRNA synthetase and our analysis shows it

to be a member of an extremely closely regulated group of ribosomal and translation

related genes (Figure 4.20). We also examined the local gene association networks

for three known epidermal regulators examined in our previous sensitivity analysis

Krt14, Itga6 and Ivl, also shown in Figure 4.20. Itga6 and Krt14 are both known basal

IFE markers; the local network for these genes highlights the power of our machine

learning approach to identify coregulated genes. Several known basal IFE regulators

are present in both local networks, such as Krt5, Krt14, Itga3, Cav2 and Col17a1. We
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Figure 4.19: Generator-derived gene-gene association network (global view).
Network representation of the correlation between discriminator neural network final layer values for 6605
genes (centre panel); genes are depicted as nodes and correlations between them are shown as edges (thresh-
old final layer correlation: 0.5). Network regions containing genes with overall positive and negative effect on
other genes are highlighted in red and blue respectively.
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observed a similar pattern of enriched associated genes for Ivl, an IFE differentiation

marker which is co-associated with several other differentiation genes and Rps29 a

marker of IFE-derived cells which is exclusively associated with ribosomal genes in

our local networks. Furthermore, the local network for Notch ligand Jag2 contains

several hair follicle bulge and basal IFE regulators, corresponding to its role in these

epidermal locations (Powell et al., 1998). Strikingly, Wnt3 is present in this local net-

work indicative ofWnt-Notch signalling interplay (Estrach et al., 2006; Shi et al., 2015),

which cannot be seen at the RNA level using conventional gene expression analysis.

These co-regulated epidermal genes are robustly identified despite little correlation

of expression in the scRNA-seq data.

Finally, in order to explore the predictive power of our neural network approach

we derived the local gene association network for the GATA-binding factor 6 tran-

scription factor, GATA6 (Figure 4.21a). We predicted that as a transcription factor, the

GATA6 network would contain many genes which are directly regulated by GATA6.

Hence, we hypothesised that genes in the network with a positive final layer correla-

tion should be upregulated inGATA6+ cells. Using a previous dataset from the lab, we

contrasted bulk gene expression of GATA6+ and GATA6- cells derived from the junc-

tional zone and sebaceous duct of the epidermis (Figure 4.21a) (Donati et al., 2017). Fig-

ure 4.21c shows the log fold-changedistribution of genes between theGATA6+/GATA6-

subpopulations. Genes derived from our GATA6 gene regulatory network show sig-

nificantly higher expression in the GATA6+ cells when compared to all other genes

(p < 0.05, Kolmogorov-Smirnov test). Taken together these results suggest GANs are
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Figure 4.20: Generator-derived gene-gene association network (local view).
Local gene association networks for Lars2, Itga6, Ivl, Rps29 and Jag2; edges are colored by generator final layer
correlation. Genes are depicted as nodes and correlations between them are shown as edges (threshold final
layer correlation: 0.5).
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Figure 4.21: Generator-derived gene-gene association network for Gata6.
(a) Local gene association network for Gata6 displayed as described in Figure 4.20. (b) Heatmap showing differ-
entially expressed gene expression z-scores for Gata6+ and Gata6- junctional zone and sebaceous duct cells
from Donati et al. (c) Probability density plot of the log-fold change in gene expression between Gata6+ and
Gata6- cells for genes in the predicted GATA6 local association network (violet) and all other genes (grey). Net-
work genes display greater expression changes between Gata6+ and Gata6- cells (pvalue = 1.3e-4).

capable of elucidating complex gene interrelationships beyond the limits of linear cor-

relation analyses.

4.3 Conclusions

We have addressed a major goal of single cell gene expression analysis; the desire to

obtain functional gene relationships and a predictive model of transcriptional state in

single cells. This serves as a framework for understanding cell fate transitions, disease-

causing perturbations and state-determining genes across tissue types.

Herewedemonstrate the effectiveness of a newdeep learning approach in integrat-

ing multiple gene expression datasets, despite no prior adjustment for technical and

batch-to-batch variation. To the best of our knowledge, this is the first timeGANshave
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been applied to genomic data. Our approach of combining data from cells in differ-

ent environments with diverse technical and biological noise allows robust inference

of gene associations intrinsic to epidermal cells rather than experimental conditions.

We focused on skin due to the wealth of knowledge available regarding subpopula-

tions and cell state. However, our generative model can be extended to integrate cells

from multiple tissues and we anticipate this will advance our understanding of gene

expression relationships across tissues.

As further scRNA-seq data becomes available, particularly through large scale

projects such as the Human Cell Atlas (Rozenblatt-Rosen et al., 2017) we envisage

that GANs will be a viable strategy to analyse all human cell types en masse. In our

study we have shown that a relatively small dataset of under 2000 cells is sufficient

to uncover state-determining genes and gene expression networks in the epidermis.

GANs applied to a greater dataset covering multiple tissues could be used to resolve

organism-wide gene expression relationships and to predict previously unseen cell

state transitions.
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4.4 Methods

4.4.1 Deep learning and neural networks

Datasets and data preparation

All datasets analysed in this chapter are publicly available under the GEO accessions

GSE90848, GSE67602 and GSE99989. We combined these three datasets using tran-

scripts per million (TPM) normalisation and removed labelled non-epithelial cells

from the Joost dataset. Data was filtered for: cells with more than 1000 genes detected

log2(TPM+1) > 1 and genes expressed in more than 500 cells at log2(TPM+1) > 1. All

neural network input datawas log2(TPM+1) and the combineddataset is available as a

CSVmatrix at https://github.com/luslab/scRNAseq-WGAN-GP/tree/master/data.

Tools and code availability

Data preparation was performed using R. Gene ontology enrichment was evaluated

using enrichR (Kuleshov et al., 2016). All other analysis and implementation of the

generative adversarial networks was performed using Python (numpy, sklearn and

networkx). We used Google’s Tensorflow (Abadi et al., 2016) deep learning frame-

work to implement, train and monitor our neural networks. We have provided a

Jupyter Notebook containing our implementation of the generative adversarial net-

work available at https://github.com/luslab/scRNAseq-WGAN-GP.
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Generative adversarial network algorithm

We adapted our generative adversarial network algorithm from four previous works

(Arjovsky et al., 2017; Gulrajani et al., 2017; Goodfellow et al., 2014b; Radford et al.,

2015). Both generator and discriminators are fully connected neural networks with

one hidden layer. We used a Leaky Rectified Linear Unit (LReLU) as the activation

function for both networks using a coefficient of 0.2.

The generator input consists of a 100-dimensional latent variable (z) and a hidden

layer size of 600 fully connected units. In order to reduce training time and data re-

quired for the generator network to simulate the Poisson distributed nature of scRNA-

seq count data we trained the generator network using an additive Poisson and Gaus-

sian distributed latent variable where z = N(μ = 0, σ = 0.1 ∗ max) + P(λ = 1). Gen-

erator output is a 6605 dimensional vector representing the 6605 genes in the training

cohort.

The discriminator network input is a 6605 dimensional vector (gene expression

profile) and has a hidden layer size of 200 fully connected units. The final layer of the

discriminator does not apply an activation function, in line with other Wasserstein

GANs using a gradient penalty loss function.

We used backpropagation and RMSProp to train the two neural networks (learn-

ing rate of 5e-5) and a batch size of 32 cells. Additionally, datawere augmented during

training by randomly permuting the expression of 10 genes expressed at log2(TPM+1)

< 3. We used several loss functions during this study before finalising on using the
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Wasserstein-GAN (WGAN) with gradient penalty loss function. WGAN replaces the

original GAN where data distributions of generated and real data are compared us-

ing the Jensen-Shannon divergence for the loss function (Goodfellow et al., 2014b). In

WGANs the loss function is calculated using the Wasserstein distance which gives

improved training stability (Arjovsky et al., 2017). Gulrajani and colleagues further

improved on this variant of GANs by eliminating weight-clipping in favor of a gradi-

ent penalty in the form of the gradient between pairs of real and generated samples

(Gulrajani et al., 2017).

The two loss functions to minimise are:

LDiscriminator = E[D(G(z))] − E[D(x)] + λE[(||∇D(x′)||2 − 1)2]

LGenerator = −E[D(G(z))] ,

where G is the generator network and Dis the discriminator network such that G :

z → x̂ , zis the generator latent variable, x̂ is a generated gene expression profile, x is

a real gene expression profile and x′ is uniformly sampled between pairs of generated

and real gene expression profiles.

Convergence of the loss function is not sufficient to evaluate completed training

of GANs. For each timepoint we evaluated the diversity of cells produced by the

generator by simulating 500 cells and calculating the median distance (Pearson), i.e.

median cell-cell distance.
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For a list of GAN parameters used see Appendix B.

4.4.2 Dimensionality reduction and clustering for the GAN

We evaluated clustering and structure of real and generated single cell RNA-seq pro-

files in three ways 1) PCA (principal component analysis), 2) t-distributed stochas-

tic neighbour embedding (t-SNE) on data with the top two principal components re-

moved. 3) t-SNE on the hidden layer output values of the discriminator network. For

all t-SNEs we used a default perplexity parameter of 30.

Simulated time-series gene expression profiles were clustered by k-means clus-

tering with 20 expected clusters. Clustered dynamic gene expression profiles were

subsequently visualised and two pairs of clusters were manually merged where they

were deemed to be visually similar.

4.4.3 Latent space mapping and interpolation

Terminally differentiated cells and basal IFE cells were sampled from the combined

dataset on using labels from the original studies. In order to generate corresponding

latent space variable zbasal and zdifferentiated for cells xbasal and xdifferentiated we randomly

generated cell expression profiles until the correlation between x and the generated

cell G(z)reached a threshold of 0.7. Figure 4.3 shows that a correlation of 0.7 between

two cells is rare, hence, we assume that this threshold is sufficient to generate a gene ex-
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pression profile representative of the original cell state. We next calculated the differ-

ence between the basal and differentiated cell in latent space i.e. δ = zbasal−zdifferentiated .

This latent space representation of differentiation was used to simulate differentiation

on a further unseen cell where we obtained zunseenand calculated a predicted termi-

nally differentiated latent space point zunseen differentiated = zunseen + δ. To obtain simu-

lated gene expression time series data we interpolated 1000 points between zunseenand

zunseen differentiatedand generated 1000 intermediate gene expression profiles from these.

4.4.4 Discriminator network sensitivity analysis

Contribution of genes to output and sensitivity of the discriminator network was per-

formed by taking unseen cells and varying the output of each gene between the min-

imum and maximum observed across all cells. For important genes this results in a

change of the discriminator output D(xp)where xpis a perturbed gene expression pro-

file. We performed 100 linearly interpolated perturbations. Sensitivity curves were

calculated by taking the mean normalised D(xp)at each expression level as unseen

cells have can differ in their baseline or unperturbed discriminator score D(x). Max

sensitivity gradient (see Figure 4.18) was calculated by taking the absolute value of

maximum gradient of these curves.

145



4.4.5 Local gene association networks

Gene co-regulatory relationships were inferred by analysing the weights of the gener-

ator neural network final layer. The Pearson correlation matrix of the final layer was

used as a network adjacency matrix. To construct association networks for a gene we

selected all local geneswith a final layer correlation > 0.5 and retained any connections

within the local network also with final layer correlation > 0.5.
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Chapter 5

Conclusions and Future Perspective

5.1 Key conclusions

In this thesis I aimed to understand how keratinocytes make long and short term cell

fate decisions. I focused on two approaches. Firstly, I investigated perturbations to

cell state through a signalling pathway known to regulate epidermal cell state in an

autonomous and non-autonomous manner, the Wnt/β-catenin pathway. Secondly,

using an a priori approach, I applied a new generative method to integrate single cell

gene expression data and uncover gene regulatory relationships governing cell state.

In Chapter 2 I characterisedWnt activation using the ΔNβ-cateninER inducible ac-

tivation system in order to investigate non-cell autonomousWnt signalling in Chapter

3. I found differences in nuclear β-catenin abundance when Wnt signalling is acti-

vated transiently (1hr) or constitutively (24hrs). Unexpectedly, I also found that one
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of the effects of autonomous Wnt activation is upregulation of mRNA-binding pro-

teins and a change in intron retention.

In Chapter 3 I used the ΔNβ-cateninER system to dissect non-cell autonomous

Wnt activation effects from the better studied autonomous activation effects. I started

by applying single cell RNA-seq to examine the molecular heterogeneity of wild type

keratinocytes in vitro. Next I used this as a reference to understand the effect of expos-

ing a keratinocyte to aWnt-activated neighbour. This analysis showed thatWnt+ cells

can induce their neighbours to transition towards a more proliferative transcriptional

state. Using a pseudo-ordering approach I reconstructed the transcriptional changes

occurring in this transition and determined the responsible transcription factors. In

addition, single cell analysis identified a perturbation in protein-synthesis associated

genes. To validate this finding I developed a high-throughput neighbour-cell image

analysis method combined with a protein synthesis assay to show that neighbours of

Wnt+ cells increase in translational activity.

Finally, in Chapter 4 I developed a new generative method for the analysis of sin-

gle cell RNA-seq data. Using generative adversarial neural networks I have shown

it is possible to synthesise scRNA-seq data indistinguishable from real data. As a

consequence of using a generative approach I was able to simulate differentiation in

single epidermal cells and predict gene expression changes at high time resolution. In

addition this method predicts gene-gene regulatory relationships in an unsupervised

manner, which I validated by examining genes perturbed when the transcription fac-

tor Gata6 is expressed.
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5.2 Future directions and open questions

Beyond the aims of this thesis, several exciting questions remain open and below I

highlight potential directions for future research.

5.2.1 Role of intron retention in Wnt signalling

Intron retention is an emerging field and its role in epidermal transcriptional regula-

tion, studied in Chapter 2, leaves several avenues for future research (J-L Wong et al.).

From this work, the mechanism of intron retention downstream of Wnt signalling is

currently unclear. One hypothesis is indirect regulation of intron retention by acti-

vation of splicing regulators downstream of beta-catenin activation. In Chapter 2 ,

several RNA-binding proteins were observed to be upregulated after Wnt activation.

Future work could focus on investigating the role of these RNA-binding proteins by

selective knock-down (e.g. siRNA-mediated downregulation) of these splicing com-

ponents and observing the resultant effect on intron retention under Wnt activated

conditions.

An alternative hypothesis is direct regulation of intron retention by beta-catenin.

Within the nucleus beta-catenin is primarily thought to bind with TCF/LEF transcrip-

tion factors. However, it is possible that beta-catenin can also directly bind RNA-

binding proteins and hence regulate intron retention directly. A future study could

perform mass spectrometry of beta-catenin in complex with its nuclear partners to
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characterise whether this form of regulation is present.

5.2.2 Mechanism for transduction of non-cell autonomous Wnt acti-

vation

Non-cell autonomous Wnt signalling clearly regulates the state of neighbouring cells.

In Chapter 3 I showed that NCAWnt effects are abrogated by culturing keratinocytes

in low-calcium medium and hence likely to be dependent on desmosome (or other

intercellular junctions) mediated cell-cell contact. Although downstream activated

transcription factors were identified, I did not identify the molecular basis for trans-

duction of the NCA Wnt signal from autonomously activated cell to neighbouring

cell. It is of interest to identify the molecular mechanism of this signal transduction to

provide further insight into Wnt+ stem cell niches. To investigate this further it may

be necessary to selectively knock-down components of the desmosome and observe

the effect on NCA Wnt signalling. Furthermore, profiling autonomously activated

cells for a range of cell surface proteins using mass cytometry (e.g. CyTOF, Fluidigm)

could provide clues regarding the molecular mechanism.

5.2.3 Further application of GANs

Additional resources should be placed into applying GANs to two immediate appli-

cations. Firstly, GANs should be applied to upcoming large-scale single cell projects
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such as the Human Cell Atlas (Rozenblatt-Rosen et al., 2017). Futher details regard-

ing the project can be found at https://www.humancellatlas.org/. My work

demonstrates that GANs are able to integrate diverse datasets. Projects such as the

Human Cell Atlas have the long term goal of acquiring single cell gene expression

data for all human cell types. It would be interesting to attempt to create a gener-

ative model capable of synthesising scRNA-seq expression profiles from all human

cell types. If successful, such a model could be used to explore all possible cell state

transitions and examine the similarities among cell states in different tissues. For ex-

ample, both the hair follicle and intestinal stem cell niches share molecular features

such as Lgr5+ stem cells (Haegebarth and Clevers, 2009). Using an all-cell integrative

approach, it would be valuable to determine whether there is a common gene regula-

tory network in these and other tissues.

Secondly, GANs should be applied to additional single cell data types. In par-

ticular, single cell chromatin accessibility (scATAC-seq, Buenrostro et al. (2015)) and

methylation (Farlik et al., 2015) are two areas where there is an increasing amount of

data available for neural network training. Furthermore, both of these datatypes share

many characteristics with scRNA-seq and are therefore more likely to be successfully

analysed with a generative model.

151

https://www.humancellatlas.org/


5.2.4 Neural network structures incorporating gene properties

In Chapter 4 of this thesis I applied a fully connected neural network structure for both

generator and discriminator neural networks. In these neural networks, all genes are

connected to all other genes making them computationally expensive to use for large

numbers of genes (> 20,000). Furthermore, in current applications of neural networks

to genomic data there is no incorporation of prior knowledge regarding genes such as

length, chromosome and proximity to other genes. In contrast, most neural networks

applied to image data do incorporate prior information in the form of spatial relations

between image pixels. Future research into neural network structures which incorpo-

rate knownproperties of genes and their interrelationships could improve their ability

to model gene regulatory relationships and may require less data for training.

5.3 Concluding remarks

In this thesis I investigated several aspects of epidermal cell state and gene regulation

in single cells. Chapter 3 focuses on one perturbation to epidermal cells (non-cell

autonomous Wnt signaling) and how this affects heterogeneous subpopulations in

vitro. This is an example of one specific induced cell state transition. Work presented

in Chapter 4 extends this to incorporate multiple states and conditions of epidermal

cells in vitro and in vivo. One current open question is the extent to which epidermal

cells can transition between states. Epidermal cell differentiation is usually considered
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to be a one-way process. However, recent evidence suggests that under comparatively

rare circumstances, such as wounding, cells are able to dedifferentiate and contribute

to wound repair (Donati et al., 2017).

An exciting future application of this work is to map all possible cell state transi-

tions and to predict circumstances under which rare cell state transitions can occur.

In the case of dedifferentiation of epidermal cells it may be possible to apply this in-

formation to modulate wound healing and repair in vivo.

Finally, although the focus of this thesis has been on gene expression, another ex-

citing future prospect is multi-omic integration of single cell data. In particular, chro-

matic accessibility information (e.g. single cell ATAC-seq, Buenrostro et al. (2015)) and

three-dimensional organisation of DNA in the nucleus (e.g. single cell Hi-C, Stevens

et al. (2017)) are two additional aspects of transcriptional regulationwhich are distinct

from gene expression. Integration of these data types with single cell RNA-seq using

methods such as the GAN will further our understanding of cell state and transcrip-

tional regulation of cell state transitions.
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Appendix A

TFs regulating state A to state D NCA

Wnt transition

Below are transcription factors regulating the state A to state D transition relating to

Chapter 3.

Rest, Smad1, Ctcf, Asxl1, Rcor2, Mef2a, Top2b, Nr3c1, Pbx1, Tbp, Rad21, Clock,
Smarcd1, Rarb, Padi4, Bcl6, Elf1, Rela, Rcor3, Kdm6a, Foxo1, Mecom, Elk3, Rxra,
Dcp1a, Cnot3, Ar, Klf5, Gata6, Brd4, Cux1, Gata3, Srf, Prdm5, Thap11, Chd1,
Foxm1, Jund, Sox2, Hoxb4, Ccnd1, Hoxb7, Jun, Nanog, Yy1, Ppard, Sox9, Egr1,
Ttf2, Mybl2, Tcf4, Sin3b, Atf3, Xrn2, Trim28, Vdr, Phf8, Klf4, E2f4, Kdm5b, E2f1,
Smad4, Smad3, Bcl3

Figure A.1: Transcription factors regulating non-cell autonomousWnt activation.
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Appendix B

GAN training parameters

Below are parameters used for the generative adversarial network related to Chapter

4.

155



Table B.1: Parameters used for creating GAN neural networks and training

Parameter Value
Batch size 30
Generator input size (z) 100
Generator layer 1 units 100
Generator layer 2 units 600
Generator layer 3 units 6605 (num. genes)
Generator initialised weights range : -0.5 to 0.5
Generator initial learning rate 5.00E-05
Discriminator input size 6605 (num. genes)
Discriminator layer 1 units 6605 (num. genes)
Discriminator layer 2 units 200
Discriminator layer 3 units 1
Discriminator initialised weights range : -0.05 to 0.05
Discriminator initial learning rate 5.00E-05
L2 regularisation scale 0.8
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